
The Pennsylvania State University 

The Graduate School 

Department of Chemistry 

 

 

SIMULATIONS OF ROTATIONAL DYNAMICS AND ELECTRONIC 

SPECTROSCOPY IN SUPERCRITICAL FLUIDS 

 

 

A Thesis in 

Chemistry 

By 

Nikhil Patel 

 

© 2003 Nikhil Patel 

 

Submitted in Partial Fulfillment 
Of the Requirements 

For the Degree of 
 

Doctor of Philosophy 

 

May 2003 



 iii 

ABSTRACT 

 

 Molecular dynamics simulations of diphenylbutadiene (DPB) and 

hydroxymethylstilbene (HMS) in supercritical CO2 were performed in order to 

understand the role of solute-solvent interactions in determining solvation structure 

and rotational dynamics in supercritical solvents.  A characteristic feature of solvation 

in supercritical solvents is the buildup of solvent density in the neighborhood of the 

solute – a phenomenon known as local density augmentation.  Effects of density 

augmentation can be found in many solute-centered observables such as electronic 

spectral shifts and solvent-induced friction.  Experimental measures of local densities 

derived from absorption shifts were compared to simulated shifts based on two simple 

models.  Although neither accurately reproduced the magnitude of the absorption 

shifts measured in experiment, the density dependence of the simulated shifts was 

close to experiment.  The augmentation deduced from these experimental data was 

close to the found in simulation.  The simulations slightly underestimated the extent 

of density augmentation seen in experiment, following the pattern observed in prior 

studies.  Following the examination of the solvation structure, the rotational dynamics 

of both solutes were analyzed and compared with two experimental studies performed 

by different researchers.  Whereas both sets of experimental data showed a linear 

relationship between the rotation times of DPB and the bulk density, the data sets 

reported quantitatively different density dependent behaviors of the HMS rotation 

times.  Succinctly, although both data sets implied that the rotation times of DPB 
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were ignorant of the local density augmentation, they didn’t agree on whether or not 

the same was true for HMS.  In order to try to understand these differences, the 

rotational friction was examined in simulation, as it characterizes the observed 

rotation times.  Surprisingly, it was found that integral friction was linear in the bulk 

density, and therefore, was ignorant of the local density augmentation.  However, a 

subsequent detailed examination of the time-dependent rotational friction in 

simulation showed why this is the case. 

 In order to obtain more quantitative agreement between simulated and 

experimental spectral shifts, simulation studies of anthracene in a series of 

representative liquid solvents were performed.  Anthracene was chosen as it 

represents a simple case, where the solute-solvent interactions are dominated by 

dispersion interactions.  As a result, the excited state intramolecular potential energy 

surface of the solute was model with a modified version of the ground state surface.  

In the excited state, the well-depths and sizes of the solute carbon atoms were scaled.  

Using this approach, the absorption shifts and widths of anthracene in the various 

solvents showed agreement to within 20% of experimental measurements.  In 

addition, when pressure dependent simulations of anthracene in n-hexane were 

performed, the spectral shift model also showed good agreement with experimental 

absorption shifts and widths.  When anthracene was simulated in the excited state, the 

resulting emission shifts calculated in simulation also showed good agreement with 

experiment.  Unfortunately, the simulated emission widths agreed with experiment to 

no better than 30%.  It was concluded that this relatively large error in the emission 
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widths was due to the functional form (Lennard-Jones) used to model the excited 

state.  To address this result, several variations of the simulation shift model were 

adopted but failed to yield significantly improved correlations with experiment.  

Nevertheless, it was concluded that the spectral shift model used in simulation 

provided a useful prediction of experimental measurements. 

 The final study applied the spectral shift model optimized for anthracene in 

liquid solvents to simulations of anthracene in supercritical CO2 and ethane.  

Simulated spectral shifts and widths were generally found to agree with experiment to 

within uncertainties.  In addition, the augmentation derived from the simulation 

spectral shift calculations displayed modest agreement with experiment in ethane.  On 

the other hand, the simulated shifts underestimated augmentation derived from 

experiment in CO2.  The source of this discrepancy is not yet understood. 
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Chapter 1 
 
 

 
Introduction 

 
 
 

 It is a daunting task to try to imagine a world without solvents.  From the most 

mundane industrial processes to the vital biochemical reactions that support life, 

solvents facilitate a variety of chemical processes, which would otherwise not be 

possible.  In recent years, a special class of solvents, known as supercritical fluids, 

has been increasingly used in a host of industrial applications1-3.  This pervasiveness 

is due to the fact that the solvent properties of supercritical fluids are highly tunable4.  

Namely, above the critical temperature, the solvent can be continuously changed from 

a gas-like to a liquid-like state with only modest changes in pressure.  In addition, 

because solvents, like CO2, are environmentally benign and have critical temperatures 

close to room temperature, disposal and handling of these solvents is neither 

expensive nor hazardous.  Therefore, it is easily understandable why supercritical 

fluids have been a boon to large-scale chemical processes. 

Along side their remarkable macroscopic properties, supercritical fluids have 

a host of unique microscopic properties as well.  Specifically, in region of the critical 

point, the solvent density around the solute is enhanced relative to the bulk density.  

This inhomogeneity produced by the solute is known as local density augmentation4, 

and can be viewed as a clustering effect.  Because the local environment about the 
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solute differs from the bulk, the solute’s behavior is not that expected based on bulk 

solvent properties.  It is precisely these phenomenona, namely local density 

augmentation and its coupling to solute energetics and dynamics, which is 

investigated in this thesis. 

Chapter 2 contains a detailed study of diphenylbutadiene (DPB) and 

hydroxymethylstilbene (HMS) in supercritical CO2.  Choice of these systems was 

motivated by early measurements of rotational times by Anderton and Kauffman5.  

These authors found qualitatively different density dependences of the rotational 

times of these two solutes.  In contrast, Biswas et al.6 have also measured rotation 

times of DPB and HMS in CO2 and have found comparable rotation times at all 

densities.  The simulation studies found in Chapter 2 help to decide on the correct 

experimental picture, as well as discern what role solute-solvent interactions play in 

the solvent distribution and solute rotational dynamics.  In addition, because 

simulation gives insight into the microscopic mechanisms of rotational friction and 

how they give rise to the rotational behavior of the solutes, a deeper understanding of 

molecular rotations in supercritical solvents is achieved. 

Most of what is known about solvation in supercritical fluids comes from 

spectroscopic measurements, and in particular data on electronic spectral shifts.  

Therefore, the ability of simulation to predict experimental spectral shifts is crucial to 

determining the accuracy of simulations.  The problem, however, is that a rigorous 

computational treatment of these spectral shifts is unfeasible at the present time.  As a 

result, approximate methods for calculating these shifts are indispensable.  In Chapter 
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3, absorption and emission shifts of anthracene in various solvents are collected using 

MD simulations.  The general approach taken is to model the difference between the 

ground and excited states of anthracene in terms of a simple change in the Lennard-

Jones potentials7-10 specifying its interaction with its solvent surroundings.  More 

specifically, the excited state well-depths and atomic sizes of the carbon atoms of 

anthracene are scaled.  These scaling factors are determined by optimization over the 

various solvents to get the best agreement between simulated and experimentally 

measured shifts and widths.  In Chapter 3, the applicability of such an approach, 

using the same scaling factors for all solvents, is investigated and the general 

behavior of the spectroscopic model is discussed. 

Finally, Chapter 4 extends the spectroscopic approach laid out in Chapter 3 to 

supercritical systems.  In particular, simulations of anthracene in CO2 and ethane are 

performed, and the scaling parameters determined in Chapter 2 are used to predict 

absorption and emission shifts and widths of anthracene in these two solvents.  In 

addition, Chapter 4 also discusses the differences between local density augmentation 

predicted by theses spectroscopic calculations and how they relation to the 

augmentation seen by the coordination number of the 1st solvation shell. 
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Chapter 2 
 
 

 
Solvation and Friction in Supercritical Fluids:  Simulation-Experiment 

Comparison in Diphenyl Polyene/CO2 Systems 
 
 
 

I. Introduction 

 Over the past two decades, supercritical fluids have been increasingly used in 

a variety of industrial processes such as extractions and separations.  They have also 

been used as a tool to understand and facilitate chemical reactions1-3.  Their almost 

ubiquitous presence may be attributed to their highly tunable properties as solvents.  

Above the critical temperature, the properties of supercritical fluids can be 

continuously changed from gas-like to liquid-like values with modest changes in 

pressure.  In addition to their varied macroscopic characteristics, the microscopic 

distribution of solvent molecules in the near critical region has also been of 

considerable interest.  In this region of the phase diagram, the distribution of solvent 

molecules is found to be inhomogeneous; the solvent tends to form regions of 

enhanced density that may be loosely described as solvent clustering4,5.  It is precisely 

this phenomenon, as well as its coupling to dynamic observables, that is of interest in 

the present thesis. 

 This present chapter focuses on the static and dynamic behavior of 

diphenylbutadiene (DPB) and hydroxymethylstilbene (HMS) in CO2, and is based 
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upon previously published work[Patel, 2002 #6021].   In particular, the solvation 

structure and rotational behavior of these solutes are characterized.  These particular 

systems were chosen for several reasons.  First, and most importantly, Anderton and 

co-workers have experimentally determined rotation times for DPB and HMS in CO2 

as well as in a number of other liquid solvents6-8.  Secondly, as noted by Anderton 

and Kauffman, these solutes have very similar mechanical properties; i.e. they have 

comparable dimensions and moments of inertia.  The main difference between DPB 

and HMS is in their electrical characteristics.  DPB has no dipole moment whereas 

the dipole moment of HMS is about 2.9 D7.  As a result, differences in the observed 

solvation structure and rotational behavior may be attributed to differences in the 

electrical properties of these two solutes.  Therefore, the contribution of solute-

solvent electrical interactions in the compressible region of CO2 can be evaluated on a 

microscopic basis by simulation. 

 Of particular interest is the coupling of the solvation structure to the rotational 

dynamics of DPB and HMS in CO2.  Through their measurements of rotation times, 

Anderton and Kauffman concluded that DPB does not induce any solvent clustering.  

However, owing to hydrogen bonding between HMS and CO2, the authors conclude 

that solvent clustering is indeed present, and substantial, in the HMS/CO2 system.  

These conclusions are based on the degree of non-linearity of the rotation times on 

the bulk density; the measured rotation times of DPB are not inconsistent with a 

linear density dependence, whereas the measured HMS rotation times by these 

authors are highly non-linear.  In light of the fact that local density augmentation is 
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seen about solutes similar to DPB in a wide variety of solvents9, these conclusions are 

not anticipated.  As a result, a large part of the current work is devoted to 

investigating local solvent structure.  By understanding the solvent distribution and 

energetics around the solute, the connection between solvation and solute dynamics 

becomes more transparent.  In order to get a quantitative handle on this coupling, the 

solvent friction is also investigated as it provides a numerical as well as a conceptual 

characterization of the rotational environment of the solute.  

 Biswas et al.10 also measured rotation times of DPB and HMS in CO2.  These 

authors reported rotation times in DPB and HMS that are not inconsistent with a 

linear density dependence.  More importantly, though, the rotation times of Biswas et 

al. are similar for both DPB and HMS, in contrast to the reported rotation times of 

Anderton and Kauffman.  It should be noted that the experimental work of Biswas et 

al. was completed after the work presented in this thesis.  Nevertheless, these results 

place even more emphasis on the need to understand how the solvation structure 

affects the rotation times in the supercritical region. 

 The remainder of this chapter is divided into 5 sections.  Section II covers the 

theoretical background.  Here, the various calculations performed in simulation are 

motivated and described.  In addition, some general discussion involving the 

phenomenon of local density enhancement in supercritical fluids is also provided.  

Section III presents special considerations when performing supercritical simulations.  

In general, near the critical density, solvent-solvent spatial correlations extend over 

large distances and there is also an associated slowing down of the dynamics.  This 
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effect is considered in the context of precautions needed to ensure realistic simulation 

results.  Section III also presents calculations of the shear viscosities and self-

diffusion constants of neat CO2 used to test the suitability of the solvent model 

employed here.  The model was parameterized to reproduce the co-existence curve 

for the pure liquid, and therefore, a gauge on the dynamic predictions of the solvent 

model is needed.  The parameterizations of the solute models are given in Section IV.  

Both DPB and HMS have several conformations close, in energy, to the global 

minimum of the intramolecular potential energy surface.  These conformations are 

discussed in relation to their effects on the solute dynamics as well as their effects on 

the solute-solvent energetics.  Also in Section IV are the results of convergence and 

ensemble testing of the simulations.  The microcanonical ensemble was chosen for 

these simulations.  However, the effects of using a different thermodynamic ensemble 

are also investigated.  The solvation structure results of the simulations are presented 

in Sections VA and VB.  Section VA begins with a discussion of solvent 

distributions.  The solvent distributions are explored using radial distribution 

functions as well as density contour maps.  In addition, the effect of hydrogen 

bonding in the HMS/CO2 system is also investigated.  According to Anderton and 

Kauffman, the non-linear dependence of the HMS rotation times on the bulk density 

is due to solvent clustering induced by hydrogen bonding between HMS and CO2, 

and therefore, the energetics of such an association is investigated.  In Section VB, 

the simulated spectral shifts and local density augmentation is compared to 

experimental measurements11.  To the extent that the experimentally measured 
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spectral shifts are a direct measure of the coordination number, they are compared to 

the simulated coordination number as well as the simulated spectral shift.  The 

simulation results on rotational dynamics are given in Section VC.  Here, rotational 

times and correlation functions of the solutes are studied.  These results are compared 

to experimental measurements8,10 in Section VD.  The solvent friction, which gives 

rise to the observed dynamics, is discussed in Section VE.  Here, it is found that the 

observed rotation times for DPB and HMS are a rather curious combination of 

attractive and repulsive contributions of the solute-solvent intermolecular potential.  

Finally, concluding remarks are given in section VI. 

 

 

II. Theoretical Background 

 

A. Local Density Augmentation 

 The phenomenon of local density augmentation has been observed for over a 

decade now4.  This phenomenon is depicted in Figure 2.1, which shows the expected 

behavior of the 1st solvation shell population along an isotherm near the critical 

temperature.  At low densities, the solvent has a characteristic gas-phase distribution 

about the solute.  As the bulk solvent density is increased, the density of the 1st 

solvation shell increases faster than the corresponding increase in the bulk density.  

Sometime before the critical density is achieved, the situation is reversed and the 

increase in the local density is slowed.  Finally, at high densities, the local and the  
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Figure 2.1: Schematic Representation of Local Density Augmentation. 

density ρ/ρc

co
or

di
na

tio
n 

nu
m

be
r N

(R
1)

  

ρlocalρbulk

 



 11 

bulk densities approach each other and increase at the same rate. Here, the 

characteristic dense-fluid distribution is achieved. 

Although local density augmentation has been observed for some time now, a 

quantitative understanding of its roots has only recently been achieved[Egorov, 2000 

#5428].  What is generally known is that there are at least two contributing factors: 

the isothermal compressibility and solute-solvent intermolecular potential. 

Early attempts at understanding the basis of local density augmentation 

focused on the isothermal compressibility as the cause5,12.  At the critical point, the 

isothermal compressibility 

T
T P









∂
∂

=
ρ

ρ
κ 1                                                     (2.1) 

of a fluid diverges.  Here, ρ is the density, P is the pressure, and T is the temperature.  

By expanding the pressure in a Taylor series in density and the van der Waals 

parameters in temperature, the compressibility of a fluid near the critical point can be 

written as13, 

( )2ρ
κ

∆+∆
≈

BT
A

T                                                (2.2) 

where A and B are combinations of the expansion coefficients, ∆T is T-Tc, and ∆ρ is 

ρ-ρc.  Eqn. 2.2 shows that in the vicinity of the critical point, the compressibility is 

still large.  It should be noted that the width of the region about the critical density 

where the isothermal compressibility is large is dependent on B.  This result is the 

main focus of the argument.  Namely, as a result of the large compressibility, an 
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attractive solute may increase the number of solvent molecules in its vicinity at a 

relatively low free energy cost. 

 More recent studies14,9 have shown that there is another determinant of the 

local density augmentation: the solute-solvent intermolecular potential.  Lewis et al. 9 

have seen that even at isotherms well above the critical temperature, anthracene 

derivatives show significant local density augmentation for a range of solvents (non-

polar, quadrupolar, and dipolar).  Along a distant isotherm, the compressibility should 

not contribute appreciably to local density augmentation and therefore, there must be 

another contributing factor the density enhancement about the solute.  In addition, 

Egorov14 has shown that by increasing the well depth of solute-solvent interaction 

(making it more attractive), the local density augmentation can be significantly 

increased. 

Although both factors play a role in local density augmentation, they are 

distinct.  In so far as the isothermal compressibility is concerned, it has been shown, if 

compressibility were the only factor contributing to the density enhancement, the 

correlation of density fluctuations would be the ultimate cause of the local density 

augmentation12 ( the isothermal compressibility is proportional to the static structure 

factor at zero wavenumbers, which in turn is the Fourier transform of the correlation 

of density fluctuations).  However, in terms of the work done by Egorov and Lewis, 

there seems to be a more direct contribution owing to the strength of solute-solvent 

interactions, and it is clear that this contribution plays a large, if not dominant, role in 

determining the density enhancement in the region of the solute. 
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 In and of itself, the local density augmentation is an interesting phenomenon.  

However, it is the effect of local density augmentation on other system observables 

that is the main concern of the present thesis.  To be more specific, different solute 

observables are sensitive to different regions of the solvent.  This distance 

dependence will then determine the effect that local density augmentation has on the 

observable of interest.  It is this subtlety that is a large part of this study. 

 

B. Spectral Shifts 

 In the current work, the spectral shifts of DPB,and HMS are calculated as 

probes of the local solvent environment. 

( ) ( )
( ) ( )

11

00

01

01

SSem

SSabs

ESESEvh

ESESEvh

∆≡−=∆

∆≡−=∆
                                    (2.3) 

In Eqs. (2.3), ( )
jSiSE  is the solute-solvent interaction energy described by the Si 

state parameters in the Sj equilibrium trajectory.  Unfortunately, a rigorous 

computational treatment of the spectral shifts is still not practical in dense systems, 

and therefore, classical approximations in simulations are necessary to reproduce the 

experimental values.  Several different methods are used to estimate ∆E and these 

methods are enumerated below.  It should also be noted that all of the approaches are 

independent of any dynamical contributions to the spectroscopy, and therefore, report 

only on the configurational phase space of the system. 

 

 Model 1:  Charge Difference 
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 In some systems, such as those involving C153, electrical interactions 

between the solute and solvent dominate the spectroscopy and ∆E can be calculated 

by 

∑∑
= =

∆
=∆

u vN N

i i

i

r
qq

E
1 1α α

α .                                               (2.4) 

Here, u refers to the solute, v refers to the solvent, N is the number of sites, q is the 

atomic charge, ∆q is the charge difference q(S1)-q(S0), and rαi = |rα-ri| is the distance 

between atoms α and i.  The convention used is that the Greek and Latin indicies 

correspond to solute and solvent quantities respectively.  Unfortunately, because the 

excited state charges on anthracene are very similar to the ground state charges, eqn. 

2.4 does not yield useful results, as the subsequent spectral shifts are very small.  

Therefore, the results of this model, although calculated during the course of the 

simulation, are omitted from the reported results. 

 

 Model 2:  Change in Lennard-Jones Parameter 

 The second model describes the spectral shift of the solute in terms of a 

change in the Lennard-Jones (LJ) well depth and size parameters.  This method has 

been successfully used to reproduce spectra of jet-cooled complexes15,16 and is slighty 

adapted here.  In this case, the energies are modeled as, 
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with  
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taken as the combining rules for the mixed quantities.  Here S refers to the electronic 

state, σ is the atomic diameter, ε is the well depth, and nu is the number of 

chromophore atoms (atoms that contribute to the spectral shift) of the solute.  The LJ 

parameters for the ground state solute and the solvent atoms are taken from various 

sources that are described in Chapter 2 Section IV.A of this thesis.  On the other 

hand, the excited state well depths and atomic diameters of the solute are 

parameterized so as to reproduce the shifts and widths of anthracene in various liquid 

solvents.  This process is described detail in the chapter on Anthracene simulations 

(Insert Chapter and Section when written). 

 

 Model 3:  Perturbation Expansion 

 This method is a simplification of the method used by Shalev et al. to 

reproduce the spectral shifts of aromatic chromaphore-rare gas heteroclusters17.  The 

starting point of this method is the second-order perturbation expansion of the energy 

difference between the S1 and S0 states of the solute interacting with a single solvent 

atom. 
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Here, Mn is solute wavefunction for the nth electronic state, Am is the solvent 

wavefunction for the mth electronic state, and En and Em are the corresponding 

energies.  The authors show that for a molecular solute and an atomic solvent, the 

electronic spectral shift may be expressed as 

( ) ( ) ( )∑ ∑∑
= = =

==∆
v u uN

i

n n

ii

iiiii
ii rr

GGKFeE
1 1 1

33
2  with 

β γ γβ

γβ
βγβγβγα

rr
.                         (2.8) 

Here, αi and iF  are the electronic polarizability and ionization potential of the solvent 

atoms.  ( )iGβγ  is a geometric factor and ( )iK βγ  is an electronic factor determined by the 

molecular orbitals (MO) used in the expansion of the excited and ground states of the 

solute.  To be more precise, ( )iK βγ  involves two single summations and two double 

summations over the MO coefficients.  In the present work, ( )iK βγ  is replaced by a sum 

exclusively over the MOs involved in the electronic transition, which is reasonably 

well described by a single ππ* HOMO → LUMO excitation (needs footnote).  The 

electronic factor may now be written as, 

( )

igasi
HOMOLUMO

i

Fh
QQ

F
QQ

K
−

≈
−−

≈
νεε

γβγβ
βγ                                 (2.9) 

where Qγ is the transition monopole formed from the product of the HOMO and 

LUMO MO coefficients on atom γ  ( LUMOHOMOCCQ γγγ = ).  This approximation leads 

to the final expression used in the calculation of the spectral shift. 
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In eq. 2.10, the solvent molecules have been treated as independent sites with 

identical and independent atomic poalarizabilities; in the case of CO2, the atomic 

polarizability is taken as 1/3 of the molecular polarizability.  

 

C. Friction 

 Molecular friction is used to further understand the behavior of molecular 

rotations.  Although the methods used to obtain the friction in this work are not novel, 

the interpretation and application of such methodologies is subtle, and therefore, 

deserves some comment.  In general, dynamic rotational and translational behavior of 

molecules is interpreted via correlation times; that is, the time it takes the system 

variable of interest to become randomized.  Physically, if attention is focused on a 

single molecule, its motion appears to be chaotic.  This motion can be broken down 

into two components: 1) a systematic variation and 2) a random variation in the 

dynamic observable of interest.  Mathematically, this separation of effects is 

embodied in the Langevin equation, where the notion of molecular friction is 

described by a systematic variation of the dynamic observable.  Because the interest 

lies in understanding the correlation times, the friction, which can be related to the 

random force, becomes integral to understanding the randomization of the dynamic 

trajectory.  Below is a generalization and quantification of the above ideas. 
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 Translational Friction 

 The generalized Langevin equation (GLE) provides a convenient framework 

in which to analyze translational friction.  The GLE for translational velocity of a 

solute, v(t)can be written as18, 

( ) ( ) ( )∫ +−−=
t

v ttdm
dt
dm

0

Fvv τττζ                                 (2.11) 

where m is the solute mass and F(t) is called the random force acting on the solute.  

The friction kernel, ζv(t), can be related to the random force via the second fluctuation 

dissipation theorem 

( ) ( ) ( )
mkT

t
tv 3

0 FF ⋅
=ζ .                                              (2.12) 

At this point, it should be noted that the term “random force” is a bit of a misnomer 

because the force is completely deterministic, and therefore, not at all random.  F(t) 

appears to be a randomly fluctuating force with ζv being the systematic counterpart, 

from a phenomenological development.  On the other hand, a rigorous development 

of the GLE19 shows that F(t) is orthogonal to A, where A is the variable being 

propagated by the Liouville operator.  In the case of translational friction, this means 

that the random force has the translational motion of the solute projected out.  

However, if the solute is much more massive than the solvent, the approximation can 

be made that the dynamics of F(t) with a fixed verses free solute will be similar. 
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 The time dependent friction, appropriate for a given system, can be related to 

its velocity autocorrelation function18 

( ) ( )∫ −−=
t

vv
v Ctd

dt
dC

0

τττζ .                                           (2.13) 

Here, ( ) ( )0vv ⋅= tCv  is the velocity autocorrelation function.  In general, one can 

form a memory function equation from any dynamical variable used to define a GLE 

such as eq. 2.13.  However, the interpretation of the friction and random force then 

becomes a little more ambiguous.  Taking the Laplace transform of eq. 2.13, 

             ( )
( )

zi
zC

z
v

v += ~
1~ζ                                                     (2.14) 

one can then solve for the frequency dependent friction.  The time dependent friction 

can then be recovered by taking the inverse Laplace transformation20.  This use of the 

memory function equation provides a direct route from simulation to the time 

dependent friction. 

 

 Rotational Friction 

 Obtaining the rotational friction of a general polyatomic molecule is not 

straightforward.  The difficulty stems from the fact that for an asymmetric solute, a 

rigorous, soluble GLE cannot be formed21.  For a rigid, linear body however, the GLE 

is completely analogous to eq. 2.11. 
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In eq. 2.15, ω is the angular velocity (in the molecular frame), ζω is the rotational 

friction, I is the moment of inertia, and Nω is the random torque on the body.  The 

corresponding memory function equation is identical to eq. 2.14, with the rotational 

variables substituted for the translational variables.  For an asymmetric polyatomic 

molecule, a heuristic approach is adopted by defining a system of independent GLEs 

for rotation about each principal axis of the molecule. 
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Here, i refers to one of the three principal axes.  Eqs. (2.16) are reasonable 

approximations in the limit of small coupling between angular velocity components.  

In particular, DPB and HMS are close to symmetric tops, and therefore, the 

expectation is that Eqs. (2.16) provide a useful measure of the time dependent friction 

on such systems. 

 

D. Radial Distribution Functions 

 Radial distribution functions play a central role in describing intermolecular 

correlations in disordered systems.  In the case of a random distribution of atoms, one 

may easily envision that the probability of finding a particle, P2, at a distance r12 from 



 21 

another particle, P1, is simply proportional to density.  However, if molecules 

interact, their positions become correlated and this probability changes.  What follows 

is a general outline that can be found in almost any text that deals with statistical 

mechanics such as The Theory of Simple Liquids18. 

 To explore this question, consider the canonical ensemble and start with the 

definition of the probability of a single configuration which can be written as 
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,...,

β
                              (2.17) 

where ZN is related to the partition function QN  by ZN = QN  /(N!Λ3N).  In the above 

expression, β = 1 / kT, U is the potential energy, ZN is called the configurational 

integral, and Λ is the thermal wavelength.  The left-hand side of eq. 2.17 should look 

quite familiar as it is simply the probability that there is a particle in the volume dr1 

about r1, a particle in volume dr2 about r2, and so on.  The 2-particle correlation may 

now be written as, 
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where the coordinates of the other particles have been integrated out.  The pair 

distribution function is now defined as 
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If the intermolecular potential is spherical, then g(r1,r2) = g(r12) = g(r).  In this case, 

the pair correlation function is called the radial distribution function.  In the 

thermodynamic limit, the normalization condition becomes 

( )∫ = Nrgdrr 24πρ .                                        (2.20) 

The physical interpretation of the radial distribution function is that g(r) represents 

the probability of finding a particle at a given distance from another particle with 

respect to a random distribution of particles.  More generally, there is now a 

connection between the equilibrium partition function and the radial distribution 

function.  This intimate connection allows for many properties to be written in terms 

of integrals over g(r) and therefore makes the radial distribution function a powerful 

tool in understanding equilibrium properties. 

 Radial distribution functions of the sort just described are most useful for 

describing the structure of atomic fluids.  Here, the interest is in the solvent structure 

surrounding a polyatomic solute.  For this reason, the calculation of the radial 

distribution functions in this chapter is somewhat different than what is described 

above.  If a single distribution function is desired, which will characterize the relative 

displacement of a solvent atom from the solute molecule, the definition of atomic 

separations must be modified to account for the non-spherical nature of the solutes 

studied.  In order accomplish this, the smallest separation between a given solvent 

atom and any atom of the solute is the distance used in the calculation of the 

distribution function.  The resulting g(r) will be referred to as the “solvation shell 

distribution function”, gss(r), and by using such a distribution, the relative probability 
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of finding any solvent atom a given distance from the surface of the solute is 

calculated. 

 

 

III. Supercritical Simulations 

 

A. Convergence 

 Molecular dynamics simulations at state points near the critical point involve 

subtleties that are not present in liquid-phase simulations5,22.  Therefore, special 

attention must be paid to the simulation details in order to ensure the full convergence 

of simulation statistics.   

 As the critical point of the solvent is approached, the spatial correlations grow 

in extent.  The correlations characteristic of critical behavior are manifested in a long-

ranged tail of the radial distribution function 

( ) ξ
r

errg
−

−− 1~1 .                                        (2.21) 

As the correlation length, ξ, increases, the volume of the simulation box must also be 

increased so that the spectrum of density fluctuations is not truncated.  In addition to 

the diverging correlation length, there is also a “critical slowing down” of dynamic 

system observables22,1,5 in the vicinity of the critical point.  Maddox et al. have shown 

that this slowing down is due to the coupling of the local solvent environment to the 

long-range density fluctuations present in supercritical fluids, which implies that the 

solute dynamics are affected by this phenomenon.  In terms of running an appropriate 
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simulation, the expectation is then simulation sizes and simulation lengths should be 

larger than those appropriate for standard liquid state studies. 

 

B. CO2 Simulation Model 

The solvent model used here is the rigid “EMP2” model of Harris and Yung23, 

which is parameterized to reproduce the experimental liquid-vapor coexistence curve, 

is used.  The model parameters are provided in Table 2.1.  Because this work, at least 

in part, focuses on the rotational behavior of DPB and HMS in CO2, it is necessary to 

investigate the dynamic properties of this simulation model.  In particular, the solvent 

self-diffusion coefficient (D) and the shear viscosity (η) are calculated from 

simulations of pure CO2 in order to ascertain the frictional characteristics (in the 

hydrodynamic limit24) of the solvent.  The viscosity and diffusion constant are 

calculated via25, 

( ) ( ) βαη αβαβ ≠= ∫
∞
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0

PtPdt
kT
V                                (2.22) 
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where Pαβ is an element of the pressure tensor, V is the system volume, vi is the center 

of mass (COM) velocity of molecule i, ri is the COM position of molecule i, and t is 

time. 
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Atom ε/k (K) σ (Å) q (e) m (g/mol) 
     

O 80.51 3.03 -0.33 16 
C 28.13 2.76 0.65 12 

 
Table 2.1:  CO2 Parameters of Harris and Yung (Ref. 23). 
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 The results of the viscosity and diffusion constant calculations are displayed 

in Figure 2.2 and Table 2.2.  The calculated and experimental viscosities26 show 

excellent agreement, with a maximum deviation of 5% at a simulated density of 

1.05ρc.  The diffusion constant also exhibits good agreement with experimental 

values27,28, however it is underestimated throughout the entire density range 

simulated.  This difference implies that the simulation model overestimates the 

translational friction in the real system, and hence, slightly elevated rotational times 

of DPB and HMS might be anticipated. 

For the rotational behavior of neat CO2, the situation is reversed.  Figure 2.3 

shows a comparison between simulated and experimental29 1/e times for the 

molecular reorientation.  The simulated values are calculated via, 

( ) ( ) ( ) ( )[ ]tPtC L
L uu ⋅= 0                                       (2.24) 

where u is a unit orientation vector along the molecular axis and PL is the Legendre 

polynomial of order L.  For all but the lowest experimental density, the simulation 

model underestimates the 1/e orientation times, which suggests that the rotational 

friction is underestimated.  Nevertheless, the simulation model of Harris and Yung 

provides a reasonable representation of CO2 dynamics in dense systems and is 

therefore adopted for use in the current work. 
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Figure 2.2: Comparison of Experimental and Simulated Shear Viscosities and Self-
Diffusion Constants.  Experimental results are plotted as solid lines and simulation 
results are plotted with filled circles. Experimental viscosity is from Ref. 26 and self 
diffusion constant is from Ref. 27. 
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 η (mP) D (10-8 m2 s-1) 
density (ρ/ρc) sim expt sim expt 

     
0.25 0.161 ± .007 .17 17 ± 3 18/18 
0.63 0.241 ± .12 .23 6.5 ± .6 7.3/6.8 
1.05 0.33 ± .02 .35 3.7 ± .3 4.3/3.8 
1.69 0.71 ± .04 .69 1.7 ± .2 2.3/2.0 
2.00 0.96 ± .05 1.00 1.3 ± .2 1.5/1.5 

 
Table 2.2:  Comparison of Experimental and Simulated Viscosities and Diffusion 
Constants for Neat CO2.  Experimental viscosities are from Ref. (22) and 
experimental diffusion constants are from Ref. 27 (left) and Ref. 28 (right).
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Figure 2.3: Comparison of Experimental and Simulated Rotation Times of Neat CO2.  
Experimental data is shown as filled symbols and simulation data is shown as open 
symbols.  Experimental data is from Ref. 29.



 30 

IV. Simulation Models and Details 

 

A. DPB and HMS Parameters 

 The LJ parameters for DPB and HMS are taken from the OPLS force-field of 

Jorgensen and co-workers30. The molecular geometries are obtained by both semi-

empirical31 (AM1) and ab initio32 (RHF/6-31G(d,p)) geometry optimizations.  These 

calculations predict twisted minimum energy geometries with a torsional 

displacement,χ (Figure 2.4), of approximately 20o.  Moreover, the local minima at 

20o show only a slight preference over the planar geometry  (< 1 kJ/mol).  At 300 K, 

however, torsional displacements of 40o are easily attained.   As a result, it is assumed 

that simulating the solutes in different local minima do not appreciably change the 

resulting trajectories.  Hence, planar geometries of DPB and HMS are adopted in this 

study. 

 As seen in Figure 2.4, the methanol group in HMS also possesses a 

conformational degree of freedom.  The figure labeled “IP” has the terminal hydrogen 

of the OH group extended away from the molecule and in the molecular plane while 

the figure labeled “OP” has this hydrogen pointed back towards the benzene ring and 

out of the molecular plane.  AM1 calculations show a preference for the OP 

conformation over the IP conformation by about 10 kJ/mol.  Unfortunately, it is 

unclear how this minimum will change in the presence of CO2.  For example, 

hydrogen bond donors will tend to prefer the OP configuration while hydrogen bond 

acceptors will prefer the IP configuration.  To the extent that dipole-quadrupole  



 31 

 

 

Figure 2.4: Molecular Geometries of DPB and HMS.
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interactions are important33 (i.e. HMS-CO2) considerable attention must be given to 

the appropriate conformation of the methanol group in HMS.  Simulations of both 

conformations of HMS in CO2 were performed.  The simulation results show a small 

difference in solvent configuration about the HMS methanol moiety.  However, this 

difference does not appreciably affect the density augmentation or the rotational 

behavior of HMS, and therefore, the OP trajectory results are reported in this work. 

 The ground state atomic charges for DPB and HMS can be seen in Figure 2.5.  

The charges are obtained from electrostatic potential fits of the 6-31G(d,p) 

wavefunctions34.  From the magnitude of the charges, the expectation is that there 

will be significant electrical interactions between DPB and CO2.  Moreover, the HMS 

atomic charges are larger than the corresponding DPB atomic charges, and therefore, 

these interactions are predicted to be even greater in the HMS/CO2 system.  The 

ground state dipole moment of the simulated HMS is calculated to be 1.8 D.  The 

experimental dipole moment is found to be 2.9 ± .1 D.  In the simulation model of 

HMS, the bulk of the dipole moment is derived from the hydroxyl group, which 

might place the source of the discrepancy upon the HMS methanol conformation.  

AM1 calculations of the HMS dipole moment as a function of OH rotation about the 

C-O bond have a maximum value of 2.2 D (1.9 D for the IP geometry), which is still 

about 24% smaller than the experimental value.  In addition, the simulated HMS has a 

dipole moment which is larger than those determined experimentally for similar 

molecules35 shows that the simulated HMS has a dipole moment which is too large.  

The source of this deficiency is unknown.  Finally, the excited state charges for DPB 
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Figure 2.5: Atomic Charges and Principle Reference Frames of DPB and HMS. 
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and HMS are similarly determined from AM1 calculations.  Because the S1-S0 charge 

differences are so small, the excited state dipole is only slight different than the 

ground state dipole moment. 

 Both DPB and HMS are expected to have similar rotational dynamics.  Both 

molecules have very similar moments of inertia, and are close to the prolate limit 

( 111 −−− <= xxyyzz III ), where x, y, and z are the principal axes (shown in Figure 2.5).  

Furthermore, the molecular dimensions are similar in the three principal directions.  

As a result, any significant deviations in the rotational characteristics of DPB from 

HMS must be related to the different electrical interactions with the solvent.  This 

difference is noted by Anderton and Kauffman8 and forms the basis for their 

experimental study of these two solutes.  Complete listings of DPB and HMS 

parameters are found in Tables 2.3 and 2.4 respectively and a comparison of 

molecular properties is found in Table 2.5. 

 

B.  Simulation Conditions  

 The MD simulations of DPB and HMS were carried out in the microcanonical 

(NVE) ensemble.  DPB was simulated at nine different densities ranging from 0.2ρc 

to 2.0ρc while the HMS simulations were carried out at 5 different densities spanning 

the same range.  The systems were equilibrated for 1 ns and the energy was chosen 

such that the average temperature is 311 K (about 7 K above the critical temperature 

of CO2).  Following equilibration, production runs were completed for a further 4 ns  
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Atom ε/k 
(K) 

σ 
 (Å) 

q 
(e) 

m 
(g/mol) 

∆q  
(e) 

∆ε 
(K) 

Q 
(e) 

        
C 35.220 3.550 -0.137 12.011 0.003 3.522 -0.007 
C 35.220 3.550 -0.169 12.011 -0.024 3.522 0.046 
C 35.220 3.550 0.154 12.011 0.028 3.522 -0.056 
C 35.220 3.550 -0.183 12.011 -0.004 3.522 0.046 
C 35.220 3.550 -0.115 12.011 -0.010 3.522 -0.008 
C 35.220 3.550 -0.126 12.011 0.019 3.522 0.071 
H 15.100 2.420 0.131 1.008 -0.003 0.000 0.000 
H 15.100 2.420 0.127 1.008 0.003 0.000 0.000 
H 15.100 2.420 0.133 1.008 -0.004 0.000 0.000 
H 15.100 2.420 0.124 1.008 0.001 0.000 0.000 
H 15.100 2.420 0.126 1.008 -0.006 0.000 0.000 
C 38.240 3.550 -0.232 12.011 -0.019 3.824 0.148 
C 38.240 3.550 -0.093 12.011 0.017 3.824 -0.118 
H 15.100 2.420 0.136 1.008 0.000 0.000 0.000 
H 15.100 2.420 0.125 1.008 -0.002 0.000 0.000 
C 38.240 3.550 -0.092 12.011 0.014 3.824 0.118 
C 38.240 3.550 -0.234 12.011 -0.017 3.824 -0.148 
H 15.100 2.420 0.123 1.008 -0.002 0.000 0.000 
H 15.100 2.420 0.138 1.008 0.000 0.000 0.000 
C 35.220 3.550 0.148 12.011 0.028 3.522 0.056 
C 35.220 3.550 -0.165 12.011 -0.003 3.522 -0.046 
C 35.220 3.550 -0.131 12.011 -0.011 3.522 0.008 
C 35.220 3.550 -0.136 12.011 0.019 3.522 -0.071 
C 35.220 3.550 -0.121 12.011 0.003 3.522 0.007 
C 35.220 3.550 -0.170 12.011 -0.024 3.522 -0.046 
H 15.100 2.420 0.131 1.008 -0.004 0.000 0.000 
H 15.100 2.420 0.128 1.008 0.001 0.000 0.000 
H 15.100 2.420 0.130 1.008 -0.006 0.000 0.000 
H 15.100 2.420 0.126 1.008 -0.003 0.000 0.000 
H 15.100 2.420 0.125 1.008 0.003 0.000 0.000 

 

Table 2.3: DPB Atomic Parameters. 
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Atom ε/k 
(K) 

σ 
(Å) 

q 
(e) 

m 
(g/mol) 

∆q 
(e) 

∆ε/k 
(K) 

Q 
(e) 

        
C 35.230 3.550 -0.107 12.011 -0.003 3.523 -0.016 
C 35.230 3.550 -0.326 12.011 -0.021 3.523 0.061 
C 35.230 3.550 0.275 12.011 0.011 3.523 -0.097 
C 35.230 3.550 -0.172 12.011 0.004 3.523 0.061 
C 35.230 3.550 -0.279 12.011 -0.020 3.523 -0.018 
C 35.230 3.550 0.065 12.011 0.029 3.523 0.114 
H 15.100 2.420 0.136 1.008 -0.006 0.000 0.000 
H 15.100 2.420 0.172 1.008 0.001 0.000 0.000 
H 15.100 2.420 0.152 1.008 -0.007 0.000 0.000 
H 15.100 2.420 0.155 1.008 0.000 0.000 0.000 
C 38.250 3.550 -0.222 12.011 0.006 3.825 0.150 
H 15.100 2.420 0.149 1.008 -0.002 0.000 0.000 
C 38.250 3.550 -0.385 12.011 0.002 3.825 -0.158 
H 15.100 2.420 0.182 1.008 -0.003 0.000 0.000 
C 35.230 3.550 0.409 12.011 0.019 3.523 0.079 
C 35.230 3.550 -0.305 12.011 -0.022 3.523 -0.057 
C 35.230 3.550 -0.084 12.011 0.002 3.523 0.011 
C 35.230 3.550 -0.190 12.011 0.031 3.523 -0.095 
C 35.230 3.550 -0.082 12.011 -0.019 3.523 0.012 
C 35.230 3.550 -0.303 12.011 0.013 3.523 -0.057 
H 15.100 2.420 0.153 1.008 0.001 0.000 0.000 
H 15.100 2.420 0.132 1.008 -0.004 0.000 0.000 
H 15.100 2.420 0.141 1.008 -0.008 0.000 0.000 
H 15.100 2.420 0.128 1.008 0.001 0.000 0.000 
H 15.100 2.420 0.168 1.008 -0.007 0.000 0.000 
C 33.220 3.500 0.195 12.011 -0.023 0.000 -0.001 
O 85.550 3.120 -0.647 16.000 0.008 0.000 0.000 
H 15.100 2.500 0.068 1.008 0.007 0.000 0.000 
H 15.100 2.500 0.021 1.008 0.009 0.000 0.000 
H 0.000 0.000 0.402 1.008 -0.003 0.000 0.000 

 
Table 2.4: HMS Atomic Parameters. 
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 Mass 
amu 

Ixx 
amu Å2 

Iyy 
amu Å2 

Izz 
amu Å2 

Lx 
Å 

Ly 
Å 

Lz 
Å 

µ 
D 

         
DPB 206 198 3429 3627 16.3 7.2 3.6 0 
HMS 210 205 3030 3223 15.5 7.2 4.2 1.8 

 
Table 2.5: Comparison of Molecular Properties. 
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while statistics were sampled every 10 fs.  In both cases, a 2 fs integration time step 

was used to propagate the equations of motion.  The translational equations of motion 

were integrated using a Verlet type leap-from algorithm25.  For the rotational 

equations of motion, a quaternion approach25 was adopted for the solute while a 

modified Gear algorithm was used for the solvent25.  Molecular interactions were 

computed with a site-site approach with applied minimum image boundary conditions 

using 864 solvent molecules.  A 9 Å cut-off was used for solvent-solvent interactions.  

Although this may seem too small, the solute-solvent dipole-quadrupole and the 

solute-solute quadrupole-quadrupole coupling are weak and hence the ignored long-

range interactions are negligible.  As a test of the simulation algorithm conditions, 

further simulations of DPB in CO2 were performed with the DLPOLY program36 at a 

single reduced density of 0.626ρc.  These runs were performed in 1) the 

microcanonical ensemble (NVE) using an Ewald sum and 2) in the isobaric-

isothermal ensemble (NPT) with a 12 Å cut-off.  The results are displayed in Table 

2.6.  Comparison of the NVE results shos that a 9 Å cutoff is sufficient here, as both 

the Ewald summation and the spherical cut-off simulations agree to within statistical 

uncertainties.  In addition, the simulations performed in the NPT ensemble show good 

agreement with the temperature and pressure of the NVE simulations.  What is 

different is the solute-solvent interaction energies and the simulation volumes.  Both 

the Lennard-Jones and electrostatic interaction energies are about 5% higher in the 

NPT simulations, and at the simulated density, correspond to having an extra atom in 

the 1st solvation shell of the solute.  The density corresponding to the volume of the  
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 NVE: Rcut = 9 Å NVE: Ewald NPT: Rcut = 12 Å 
    

Uuv-LJ (kJ/mol) -54.60 ± 0.86 -55.49 ± 1.72 -58.14 ± 0.86 
Uuv-El (kJ/mol) -6.57 ± 0.14 -6.74 ± 0.28 -7.12 ± 0.13 

T (K) 311.2 ± 0.42 309.1 ± 0.93 310.0 ± 0.02 
P (MPa) 8.4 ± 0.04 8.1 ± 0.08 8.4 ± 0.02 

V (105 Å3) 2.15 2.15 2.01 ± .014 
 
Table 2.6: Comparison of Simulation Conditions.
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NPT simulations is about 7% higher than the NVE simulations, and so, the slightly 

higher interaction energies in the isothermal-isobaric simulations are arguably a result 

of this difference in the density.  As a result, the conclusion is that the solvent 

environment about the solute is relatively independent of the tested simulation 

conditions. 

 

C.  Trajectory Convergence 

 As described in Section III.A of this chapter, convergence of the simulation 

trajectory requires special considerations owing to the long wavelength and slowly 

varying density fluctuations of the solvent.  The temporal aspect of convergence of 

these simulations is discussed first.  Plotted in Figure 2.6 is the normalized running 

time average of the 1st solvation shell population of DPB in CO2 at a density of 

0.626ρc.  At 4 ns, variation in the coordination number can still be seen. However, the 

amplitude of these variations is small (less than 0.5% of the value at 4 ns) and so the 

discrepancy between the average at 4 ns and the infinite time average should also be 

small.  Therefore, the run lengths are assumed to be adequate for the current study. 

 Insofar as the spatial convergence of the simulations is concerned, 

experimental X-ray diffraction measurements37 have determined the correlation 

length of CO2 to be less than 15 Å for the range of densities simulated.  At near 

critical densities, the box length of the simulations is about 50 Å, which implies that 

the full spectrum of density fluctuations is being truncated.  In order to ascertain the 

degree of truncation, simulations of anthracene in a monatomic model of ethane were 
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Figure 2.6: Temporal Convergence of Coordination Number of DPB in CO2 at 
0.626ρc.  Running average of coordination number.
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conducted at a density of 0.5ρc.  The choice of anthracene in ethane is a practical one; 

because the solute is modeled as a neutral monatomic species, calculations involving 

a large number of solvent molecules can be accomplished relatively quickly.  Plotted 

in Figure 2.7 is the 1st solvation shell population as a function of the simulation size.  

From these simulations, a size convergence is anticipated at about 1000 solvent 

molecules.  With respect to the simulations of DPB and HMS in CO2, this means that 

they are too small by about 15% in the number of molecules simulated.  However, the 

DPB and HMS simulations are assumed to yield meaningful results, because the 

small error in the number should have a negligible effect on the rotational and 

translational dynamics of the solute. 

 

 

V.  Results and Discussion 

 

A.  Solvation Structure: Simulation Results 

 Pictures of the DPB/CO2 simulations spanning the density range 0.2ρc – 2.0ρc 

are seen in Figure 2.8.  The cross sections are defined by the cylinder r = [0,lb/2] and 

z = [-5 Å,5 Å] in the solute centered coordinate system, where lb is the simulation box 

length at 2.0ρc.  At a density of 0.2ρc, the solvent environment resembles a gas-phase 

system, as the attractive part of the solute-solvent interactions are the dominant force 

in determining the solvent distribution in this region.  The mean free path is relatively 

large and therefore, solute-solvent collisions are infrequent.  As the density is 
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Figure 2.7:  Spatial Convergence of Coordination Number of Anthracene in Ethane.
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Figure 2.8: Snapshots of DPB/CO2 Simulations.  Cylindrical cross sections are 
defined by r = [0,lb/2] and z = [-5 Å 5 Å]. 
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increased, there are more solvent molecules in the vicinity of the solute, and 

therefore, the rate of molecular collisions increases.  Near the critical density, as 

previously mentioned, there is an excess of solvent in the vicinity of the solute (This 

effect is maximized at 0.6ρc, as will be shown later.).  However, it is difficult to 

discern this excess from a single snap-shot because the solvent itself exhibits a broad 

range of densities.  Hence, many snap-shots, encompassing the full distribution of 

solvent environments, would have to be studied in order to visualize the local density 

augmentation.  Moving to a density of 2.0ρc, the solvent has the characteristic liquid 

distribution.  In this region, as solvent packing becomes the dominant effect 

determining the solvent environment, solute-solvent collisions occur with much 

greater frequency. 

 In order to get a more quantitative picture of the solvent distributions, relative 

density maps of the DPB and HMS simulations are plotted in Figures 2.9 and 2.10 for 

densities of 0.2ρc and 2.0ρc respectively.  Figure 2.9 is studied first.  For both DPB 

and HMS, the greatest enhancement of solvent density is above and below the 

aromatic planes of the molecules as seen in the xz and yz cross sections.  In addition, 

HMS also exhibits a build-up of solvent density about the OH group, as proposed by 

Anderton and Kauffman8; this can be seen clearly in the xy and xz cross sections 

where the hydroxyl end of HMS shows a relative build-up of solvent molecules.  

However, compared to the density enhancement above and below the molecular π-

system, the augmentation induced by the OH group is about ½ as effective.  Also, as 

seen in the xz and yz cross sections, HMS shows slightly greater enhancement of the  
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Figure 2.9: Density Maps at 0.2ρc.  Shading denotes average densities of solvent 
atoms, relative to the bulk density.  Grid lines are spaced at 0.5 Å intervals. 
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Figure 2.10: Density Maps at 2.0ρc. Shading denotes average densities of solvent 
atoms, relative to the bulk density.  Grid lines are spaced at 0.5 Å intervals.
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solvent density about the solute.  Previously, it was shown, Table 2.5, that DPB and 

HMS have very similar mechanical properties, and therefore, differences observed in 

the simulations of these two solutes would be attributable to the differences in their 

electronic characteristics.  As a result, it is most likely the case that the greater 

augmentation seen in HMS is due to the larger atomic charges in the π-system (see 

Figure 2.5).  Turning attention to Figure 2.10, at a reduced density of 2.0, the 

augmentation about DPB and HMS, as well as the difference in augmentation 

between these two solutes, is considerably muted compared to the low-density plots 

in Figure 2.9 (At a density of 2.0ρc, it is assumed that there is no augmentation.).  The 

picture of local density augmentation thus far agrees with physical intuition.  Namely, 

as density is increased from a region where the attractive solute-solvent interactions 

dictate the solvent distribution, to a region where the solvent distribution is controlled 

by packing considerations, the augmentation about the solute is greatly diminished.  

In addition to the augmentation, Figure 2.10 also clearly shows that the solvation 

shells reflect the geometry of the solute, and hence, using what was previously termed 

gss(r), is an accurate method by which to quantify the solvent distribution about the 

solute.  This quantification of Figures 2.9 and 2.10 is the next facet of the solvent 

distribution to be discussed. 

 Plotted in Figure 2.11 are the solvation shell distribution functions for 

DPB/CO2 spanning reduced densities of 0.2 to 2.0.  These functions are essentially 

averages of the 3D distributions of Figures 2.9 and 2.10 averaged over solute-shaped 

regions of the solvent.  As the bulk density of the system is increased, the first peak of
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Figure 2.11: Solvation Shell Distribution Functions for DPB/CO2.  See Chapter 2 
Section II D for description of gss(r).  The inset shows the density dependence of the 
global and local maxima of gss(r), denoted by r1 and r2 respectively.
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gss(r) decreases and the second solvation shell begins to form at an intermolecular 

separation of about 7 Å.  Once again, the interpretation of gss(r) is that it reflects the 

probability of finding a solvent atom at a given distance from the surface of the solute 

relative to a random distribution of solvent atoms.  Therefore, the density dependent 

behavior of the 1st peak in gss(r) in Figure 2.11 implies that as the bulk density of the 

system is increased, the relative probability of finding a solute atom within the first 

solvation shell decreases.  This observation is contrary to the physical picture of 

dense liquids where the global maximum of g(r) increases with the bulk density of the 

system.  This behavior of the 1st peak in the radial distribution function has been seen 

before38,39, and therefore, although the behavior is contrary to dense liquid behavior, 

it is somewhat anticipated.  The inset in Figure 2.11 shows the density dependence of 

the first peak of gss(r).  Here, at high densities, the turnover behavior can be seen, as 

the system begins to behave like a dense liquid.  At low to moderate densities, 

however, the 1st peak in the solvation shell distribution function is monotonically 

decreasing.  Therefore, there does not seem to be any special dependence on the 

relative displacement from the critical density.  On the other hand, the density 

dependence of the second peak in the solvation shell distribution function, again in 

the inset of Figure 2.11, does show a non-monotonic dependence on the bulk density.  

This result makes sense if the strength of the solute-solvent interactions is considered; 

solute-solvent intermolecular interactions dominate at small separations in gss(r).  At 

larger distances, the strength of the solute-solvent interactions diminishes and the 

structure of the bulk fluid is determined by the solvent-solvent interactions.  
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Therefore, in the region of the second maximum in gss(r), the solvent-solvent spatial 

correlations, which are dependent upon the relative displacement of the bulk density 

to the critical density, are dominating the structure of gss(r), and hence, the behavior 

seen in the inset of Figure 2.11 is understandable.  This result can be arrived at more 

quickly if eq. 2.22 is considered.  Namely, as the critical density is approached from 

either above or below, the correlation length diverges and the tail of the radial 

distribution function becomes infinitely long. 

 The comparison of the DPB and HMS solvation shell distribution functions is 

made in Figure 2.12.  In analogy to Figures 2.9 and 2.10, at low density, there is a 

greater probability (about 15%) of finding a solvent atom close to HMS compared to 

DPB.  At high density, as was previously seen in the density maps, there is no real 

distinction between the solvation shell distribution functions for either solute. 

 With the solvent distribution explored, focus is now placed upon the 

energetics of these distributions in DPB and HMS.  Table 2.7 shows the static 

quantities of interest.  The coordination number is shown in the second column of 

Table 2.7.  At low densities, HMS shows a larger coordination number than does 

DPB.  However, this difference is small (about 9%) and quickly drops to under 2% as 

the bulk density is increased.  On the other hand, the HMS solute-solvent interaction 

energy, UUV, is greater than that of DPB by about 40% at a reduced density of 0.25.  

The interaction energy is composed of two parts: 1) the contribution from the 

Lennard-Jones potential and 2) the contribution for the Coulomb potential.  Because 

the Lennard-Jones potential is short ranged and the coordination number of the DPB  
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Figure 2.12: Comparison of DPB and HMS Solvation Shell Distribution Functions. 
See Chapter 2: Section ID for description of gss(r).
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density 
ρ/ρc 

N1 -UUV 
kJ/mol 

-UUV(LJ) 
kJ/mol 

fel 

DPB 
0.25 20 31.1 27.4 0.12 
0.47 35 101 45.9 0.11 
0.63 41 126 53.8 0.11 
0.80 45 140 58.4 0.11 
1.05 55 187 71.0 0.10 
1.48 64 236 83.0 0.10 
1.69 71 265 91.2 0.10 
1.90 77 292 98.6 0.10 
2.00 80 306 102. 0.10 

HMS 
0.25 22 55 29.6 0.18 
0.63 42 126 54.3 0.17 
1.05 54 183 69.7 0.16 
1.69 69 257 88.3 0.16 
2.00 79 299 100. 0.16 

 
Table 2.7: Solute-Solvent Energetics. The columns labeled N1 and UUV contain the 
coordination number of the first solvation shell and the solute-solvent interaction 
energy respective.  The column labeled UUV (LJ) contains the contribution from the 
Lennard-Jones potential to the total interaction energy and the column labeld fe 
contains the fraction of the total interaction energy due to electrostatic contributions. 
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and HMS systems is similar, the difference in UUV must be due to the Coulombic 

interaction potential.  The Lennard-Jones contribution to UUV, UUV(LJ), is plotted in 

third column of Table 2.7 and the differences seen in the coordination number are 

indeed reflected in this contribution to the total solute-solvent interaction energy.  On 

the other hand, the fraction of the total interaction energy that comes from the 

Coulombic contribution, fel, is systematically higher in HMS than in DPB.  Therefore, 

the differences in the solvation energetics of HMS and DPB are due to the dipole-

quadrupole coupling present in HMS/CO2. 

 As a final aspect of the solute-solvent energetics, the strength of hydrogen 

bonding interactions is explored.  Shown in Figure 2.13 are the local minima of HMS 

and CO2 found by two-molecule Monte Carlo methods40, in the combined potential 

energy surface.  The hydrogen bonding structure is labeled 1, the two non-hydrogen 

bonding structures are labeled as 2 and 3, and shown in panel 1, is a structure which 

is a cooperative effect between the hydroxyl dipole and the ring charges on HMS.  

From the inset table of Figure 2.13, it is clear that the pure hydrogen bonding 

structure, 4, is not the global minimum.  In addition, while the structure at the global 

minimum does involve hydrogen bonding, the difference in terms of interactions 

energies between this structure and the others is small (about 1-2 kT).  This 

observation, taken together with the fact that the non-hydrogen bonding structures are 

more numerous than those involving hydrogen bonding, it is not surprising that the 

effect of hydrogen bonding between HMS and CO2 is small in this study of the 

solvation structure.  In particular, if the atomic charges on the terminal hydroxyl
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Figure 2.13: Two-Molecule Local Minima from Monte Carlo Calculations.
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group of HMS are ignored, a local minimum of 13 kJ/mol, within ½ kT of the global 

minimum, is still found corresponding to structure 1.  As a result, the electrical 

differences observed between DPB and HMS solvation energetics are attributed to the 

increased atomic charges in the π-system of the solute and do not have an appreciable 

contribution from hydrogen bonding 

 

B.  Solvation Structure: Experimental Comparison of Absorption Shifts 

 Comparison to experimental results11 is made through absorption 

measurements and calculations.  A direct comparison of simulated absorption shifts to 

the experimentally observed shifts, as well as a comparison of the augmentation 

derived from these shifts is made.  Table 2.8 contains the shift results.  For both DPB 

and HMS, ∆ν2, eq. 2.6, systematically underestimates the magnitude of the absorption 

shift while ∆ν3, eq. 2.11, overestimates the magnitude. However, both ∆ν2 and ∆ν3 

predict the shift of DPB to be greater than that of HMS over the entire density range, 

is as observed in experiment.  Unfortunately, the degree to which the shifts in DPB 

and HMS differ is also underestimated by the simulations.  For example, at a reduced 

density of 2.0, experimental measurements show a 40% difference between the shifts 

of the two solutes while simulation predicts a difference of about 16.5%.  However, 

the more important facet of the calculated absorption shifts is not their quantitative 

agreement with experiment, but their qualitative agreement.  If the shifts have the 

same density dependence, regardless of the magnitude, the augmentation calculated 

from the curves will be equivalent, as will be discussed shortly.  In Figure 2.14 are 
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density 
ρ/ρc 

∆ν2 
cm-1 

∆ν3 
cm-1 

∆νexp 
cm-1 

∆ν2/N1 

cm-1 
∆ν3/N1 

cm-1 
DPB 

0.25 128 574  6.4 28.7 
0.47 218 972 769 6.2 27.8 
0.63 257 1138 772 6.3 27.8 
0.80 277 1225 853 6.2 27.2 
1.05 345 1515 1013 6.3 27.5 
1.48 406 1759 1244 6.3 27.5 
1.69 445 1926 1324 6.3 27.1 
1.91 486 2091 1421 6.3 27.2 
2.01 506 2168 1482 6.3 27.1 

HMS 
0.25 122 560  5.5 25.5 
0.63 226 1014  5.4 24.1 
1.05 293 1296 758 5.4 24.0 
1.69 377 1636 946 5.5 23.7 
2.01 433 1863 1065 5.5 23.6 

 
 
Table 2.8: Comparison of Experimental and Simulated Absorption Shifts.  



 58 

∆ν
/ ∆

ν re
f

0.0

0.2

0.4

0.6

0.8

1.0 XDPB

Density ρ/ρc

0.0 0.5 1.0 1.5 2.0

∆ν
/ ∆

ν re
f

0.0

0.2

0.4

0.6

0.8

1.0 XHMS

Fig
ure 2.14: Comparison Between Experimental and Simulated Absorption Shifts.  The 
experimental data is displayed as closed triangles.  The simulation data is displayed 
with open symbols;  ∆ν2 (eq. 2.6) is plotted with circles and ∆ν3 (eq. 2.11) is plotted 
with squares.  Shifts are normalized to their value at 2ρc.  Experimental data is from 
Ref. 11. 
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the absorption shifts normalized to their value at 2.0ρc.  The situation is similar to 

what is seen in the absolute shifts.  Namely, both ∆ν2 and ∆ν3 predict a higher degree 

of non-linearity in the density dependent shifts of HMS compared to DPB as seen in 

experiment.  Unfortunately, ∆ν2 and ∆ν3 also underestimate the non-linearity for both 

solutes.  Now the question is how is do these differences affect the augmentation 

derived from the absorption shifts? 

 In general, the augmentation from any system observable, which is assumed 

to be proportional to the bulk density in the liquid region, is calculated via the 

following definition: 

( )

( )
ref

ref
ref

ref
eff

m

m
LDA

ρ
ρχ

ρρχρρ

=

−=−≡

                                    (3.1) 

where χ is a system observable and ρref is taken as 2.0ρc (see Figure 2.1).  As 

mentioned above, the consequence of such a definition is that any observable that is 

simply proportional to local density will also report the same amount of local density 

augmentation.  In terms of the simulated absorption shifts, Table 2.8 shows the ratios 

of ∆ν2 and ∆ν3 to N1.  The superficial conclusion is that the augmentation calculations 

based on the absorption shifts and those based on the coordination number will be 

identical.  More subtly, and more importantly, the implication is that the calculated 

absorption shifts are a more or less direct measure of the coordination number and are 

therefore of the density augmentation present in the system.  With this in mind, the 

comparison of calculated and experimental augmentation is displayed in Figure 2.15.  
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Figure 2.15: Comparisons of Local Density Augmentation (ρeff – ρ) Serived From 
Experiment and Simulation.  Augmentation calculated from experimentally observed 
and simulated absorption shifts are plotted with filled triangles and open circles 
respectively.  Experimental data is from Ref. 11. 



 61 

For simulated values, augmentation derived from the coordination number is plotted 

for the reasons described above.  Simulation predicts a greater maximum 

augmentation in HMS/CO2 than in DPB/CO2.   In addition, both simulation and 

experiment predict a maximum augmentation at a reduced density of about 0.6, which 

is in agreement with other studies41,9 on a variety of systems.  However, although the 

simulated data agrees with experiment within estimated uncertainties, the 

augmentation seen in simulation is systematically underestimated for both solutes.  In 

particular, the maximum augmentation in simulation is about 17% lower than 

experiment for DPB and about 20% lower for HMS.  For this reason, possible sources 

of error are considered. 

 There are two main sources of error.  First of all, it should be noted that the 

spectral shift calculations used in simulation are completely additive and therefore, 

the proportionality with the coordination number is not unexpected.  However, a 

rigorous treatment of the electrical interactions involves many-body contributions42.  

Along these lines, Stratt and Adams have considered43 incorporation of such many-

body effects, assuming that the shifts may decomposed in to 2 parts: 1) A repulsive 

part which is indeed additive and 2) a dielectric contribution which is collective.  It is 

this latter non-additive contribution, neglected in the current description of the 

absorption shifts, which is expected to break the observed proportionality between the 

coordination number and the shift.  This observation suggests that the experimentally 

measured absorption shift is not entirely a measure of the coordination number.  

Rather, it is related to the coordination number in a non-trivial manner, and so, the 
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discrepancy seen between the augmentation derived from N1 and the experimental 

shifts does not imply that the simulations are not capturing the augmentation of the 

real system.  Instead, the hope is that the problem lies in the calculation of the shifts 

themselves.  The second possible source of error has been commented on in Section 

II C.  Namely, it was shown, Figure 3.4, that the system sizes of DPB and HMS are 

probably about 15% too small.  Increasing the system size, would probably increase 

the amount of augmentation seen in the simulation.  However, the error in the total 

number is small, and therefore the error in the coordination number will be even 

smaller.  So it is most likely the case that the error in the system size is not the 

dominating factor contributing to the discrepancy seen between simulation and 

experiment.  In order to sort out this difference, more study is needed, and it is hoped 

that the inclusion of the polarization modes sheds some light on this problem. 

 

C.  Dynamics: Rotation Times 

 With the solvation structure of both DPB/CO2 and HMS/CO2 explored, 

attention is focused on the dynamics of these solutes.  To begin, the orientational 

correlation functions (eq. 2.24) of the solute are investigated and both L = 1 and L = 2 

functions are considered.  The interpretation of L = 1 is straightforward because PL(x) 

= x.  Namely, the persistence (or lack thereof) of a given orientation is what is being 

measured.  The interpretation of the correlation of higher order Legendre polynomials 

is not as intuitive, however, many experiments such as those used to measure the 

rotation time DPB and HMS in CO2 actually report on the L = 2 function.  The 
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orientational correlation functions, at L=2, are displayed in Figure 2.16.  The 

corresponding correlation functions of HMS are not included as they are similar to 

the DPB results.  In addition, the free rotor decays (broken lines) are also plotted.  As 

expected, the correlation functions slow with increasing density, with the free rotor 

function bounding the decays from below at early times.  At times greater than 1 ps, 

the correlation functions depart significantly from the free rotor limit.  Taken together 

with the fact that the simulated decays are well described by exponentials (or a sum 

of exponentials), and therefore contain only a small Gaussian contribution, these 

observations imply that even at low densities, the orientational motion of the solutes 

are diffusive in nature.  So at a reduced density of 0.25, where the static picture of the 

solvation structure resembles that of the gas phase, solute-solvent collisions are still 

frequent enough to destroy the inertial character of the rotational motion at early 

times.  Figure 2.5 also shows that the decay of the x principle axis is much slower 

than the decays of the y and z axes, which are similar to one another. 

 

D.  Dynamics: Experimental Comparison of Rotation Times. 

 Although the orientational correlation functions themselves are interesting, it 

is actually the integral orientation time, 

( ) ( ) ( )∫
∞

=
0

tdtC LL
αατ                                                  (3.2) 
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Figure 2.16: Orientational Correlation Functions (L=2) of DPB/CO2 at Reduced 
Densities of 0.25, 1.0, and 2.0.  Solid lines denote simulation results.  Dashed lines 
denote the free rotor limit obtained from angular velocity distributions computed 
during simulation. 
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of these decays which can be compared to experiment.  Simulated values for both ( )1
ατ  

and ( )2
ατ  are listed in Table 2.9.  Comparison to experiment is made in Figure 2.17.  

Because the transition moment of both solutes lies along the x principle axis, ( )2
xτ  is 

what is measured in experiment.  From Figure 2.17, the simulated integral times 

(filled circles) for both solutes are seen to be approximately linear in the bulk density, 

and extrapolate to the free rotor correlation times, which are denoted as “+” in the 

figure.  As an aside, the integral time of a free rotor is actually infinite (for certain 

values of L) because once the initial angular velocities are known, the trajectory is 

known for all time.  As a result, the 1/e time, the time it takes for the correlation to 

decay to 1/e, is used as the free rotor time here.  For the x axis, at higher densities, the 

comparison is justified because these decays are well represented by single 

exponentials and so the integral time is equal to the 1/e time.  For the other principal 

axes, the decays are represented as double exponentials, and though the comparison 

of the extrapolated integral time to the 1/e time is not absolutely correct, it provides a 

useful gauge of zero density predictions.  The simulated rotation times of DPB and 

HMS are nearly equal at all but the highest density simulated.  With respect to DPB, 

the experimental data of Anderton and Kauffman8 is also not inconsistent with a 

linear density dependence, however the integral times are systematically lower than 

predicted by simulation.  For HMS, the data of Anderton and Kauffman is 

qualitatively different from the simulation predictions in that the integral times show 

a highly non-linear density dependence.  The authors ascribe this difference to the  
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density 
ρ/ρc 

( )1
xτ  

ps 

( )1
yτ  

ps 

( )1
zτ  

ps 

( )2
xτ  

ps 

( )2
yτ  

ps 

( )2
zτ  

ps 
trD  

Å2 ps-1 
DPB 

0.00 3.4 1.2 1.2 2.1 0.8 0.8  
0.25 5.6 2.8 2.7 2.9 1.3 1.5 5.4 
0.47 8.4 4.2 5.1 3.7 2.0 2.1 2.6 
0.63 10.0 5.1 5.6 4.1 2.0 2.5 1.8 
0.80 12.0 5.6 5.9 4.3 2.2 2.4 1.3 
1.05 16.0 6.3 6.8 6.1 2.9 2.9 1.2 
1.48 19.0 8.4 9.1 7.1 3.4 4.1 0.88 
1.69 25.0 10.0 11.0 9.1 4.0 4.9 0.69 
1.90 27.0 12.0 13.0 9.3 4.4 5.2 0.58 
2.00 29.0 11.0 13.0 9.7 4.6 5.6 0.56 

HMS 
0.00 3.2 1.2 1.2 2.0 0.8 0.8  
0.25 4.1 3.2 4.1 2.8 1.5 1.7 5.0 
0.63 11.0 5.1 4.8 4.0 2.0 2.3 1.8 
1.05 13.0 6.5 8.0 5.4 2.8 2.9 1.1 
1.70 22.0 10.0 10.0 8.3 3.8 4.5 0.67 
2.01 33.0 14.0 13.0 11.0 4.8 5.1 0.38 

 
Table 2.9: Integral Rotation Times and Translational Diffusion Coefficients. 
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Figure 2.17: Comparison of Experimental and Simulated Integral Times.  Simulation 
data is displayed as filled circles.  Experimental measurements of Anderton and 
Kauffman8 are displayed as open triangles.  Experimental measurements of Biswas et 
al.10 are displayed as open squares. 
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fact that the hydroxyl group on HMS induces a solvent clustering about the solute, 

and therefore, removes the linear behavior of the integral times with bulk density that 

would be otherwise observed (as evidenced by the DPB times).  In terms of the 

discussion in Section V.A of this chapter, it is difficult to see how the terminal OH 

group is able to effect this kind of change in the rotation time.  Namely, the 

augmentation about the hydroxyl group in HMS is small compared with the 

augmentation above and below the molecular plane, and therefore, the effect of 

hydrogen bonding on the rotation times should be masked by the greater 

augmentation present elsewhere about the solute.  This is also the reason why the 

simulated rotation times for DPB and HMS are similar. 

Biswas et al.10 have also measured rotation times of DPB and HMS in 

supercritical CO2 and these results are also displayed in Figure 2.17.  For both 

solutes, agreement, to within anticipated uncertainties, between simulation and 

experimental data is shown.  More importantly, the HMS rotation times measured by 

Biswas et al. can be viewed as being linear in density, in sharp contrast to the data by 

Anderton and Kauffman.  It should be noted that the two sets of experimentally 

determined rotation times use different methods to extract the desired information and 

each of these methods have their inherent difficulties10,11.  Because the Perin 

method45 used by Anderton and Kauffman incorporates time-resolved information 

collected only at the magic angle, and then uses the steady state anisotropy and 

limiting anisotropy to calculate the rotation time, it is a somewhat indirect route.  

Therefore, in light of the discussion on solvation structure and the fact that Biswas et 
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al. directly measured anisotropy decays, the Biswas et al. times are preferred to the 

data of Anderton and Kauffman. 

It is still a curiosity that the simulated rotation times of both solutes do not 

show the same type of non-linearity in the bulk density as do other system 

observables like the the coordination number.  Insofar as the solute-solvent 

interaction energy is dominated by contributions from the 1st solvation shells (Table 

2.7) the expectation is that this region of the solute provides an almost complete 

description of the rotational environment of the solute.  It is therefore reasonable to 

conclude that if there is augmentation present in the 1st solvation shell, then the 

rotational behavior of the solute should reflect on this augmentation.  However, as 

can be seen from Figure 2.17, both DPB and HMS have rotation times that are 

roughly linear in the bulk density.  As a result, it is clear that a deeper look at the 

rotational behavior of DPB and HMS is needed in order to understand the 

microscopic reasons why the rotation times seems to be ignorant of the density 

inhomogeneities about the solutes. 

 

E.  Dynamics: Friction 

 It is important to reconfirm that the roughly linear dependence of 2
xτ  on 

density extends to other measures of rotational and translational friction.  In addition, 

it might be the case that the L = 1 rotation times, which are a more direct measure of 

the solute angular displacement, might be more sensitive to the solvent environment 

and thereby more likely to show evidence of augmentation.   Figure 2.18, which 
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Figure 2.18: Rotation Times and Translational Diffusion Constants for DPB/CO2.  In 
the top two panels, the x, y, and z rotation times are plotted with open circles, filled 
triangles, and open squares respectively.  The free rotor time is denoted as as “+”. 
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shows the L = 1 and L = 2 rotation times of DPB for each principle axis, addresses 

these two issues.  Again, because the results for DPB and HMS are similar, only the 

DPB results are shown.  These values are also listed in Table 2.9.  All of the rotation 

times are approximately linear functions of the bulk density.  This result, although 

unsatisfying, is anticipated based on the previous results described in Section D.  

Namely, rotations which displace the y and z unit vectors of the molecular reference 

frame must also displace solvent above and below the molecular plane, and because 

only an isolated rotation about the z axis is ignorant of solvent augmentation, the 

expectation is that the rotation times for all principle axes should be qualitative 

similar.  Assuming, as is often done in experiment, that ( ) ( ) ( )L
fri

L
i ,τρτ −  provides a 

measure of the rotational friction, the linear dependences shown in Figure 2.18 imply 

that frictions is approximately proportional to bulk density. 

The same conclusion holds for translational friction.  The bottom panel in 

Figure 2.18 and Table 2.9 show the inverse of the translational diffusion constant, Dtr, 

computed from simulation, which is proportional to the translational friction in the 

diffusive limit24.  In light of the considerable augmentation, this result, although 

seemingly contrary to physical intuition, does support the conclusion that the 

rotational results obtained are not spurious.  In fact, it is clear that if the rotation times 

of DPB and HMS are to be understood, a deeper look at the friction is required.  For 

this reason, the time dependent friction is analyzed next, in the hopes that the 

decomposition of the friction leads to an appropriate explanation of the behavior 

depicted in Figure 2.18. 
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A complete description of friction involves ζ(t), the time-dependent friction.  The 

normalized components of the time dependent rotational friction and the translational 

friction are plotted in Figure 2.19.  These curves are generated using the methods 

described in Chapter 2, Section II.D.  The time-dependent friction functions have 

been averaged into low-, mid-, and high-density curves to partially average out 

numerical noise in the inverse Laplace transformation.  The initial fast decays of the 

time-dependent friction are to a good approximation invariant to the bulk density.  

This fast initial decay is due to the repulsive part of the solute-solvent interaction 

potential: at small intermolecular separations, small changes in distance lead to large 

changes in the force and torque and therefore cause the correlation of these variables 

to decay quickly (see Eqns. (2.12) and (2.16)).  Therefore, it is fair to characterize 

repulsive solute-solvent interactions as binary in nature.  On the other hand, the long 

time decay of the time dependent friction does seem to show a non-trivial density 

dependence.  The slow decay is controlled by the attractive part of the solute-solvent 

potential, where the potential does not have a comparatively large derivative.  The 

fact that there is a significant density dependence to this long-time tail means that it is 

determined by collective solvent motions, in contrast to the binary behavior of the fast 

decay.  

In order to characterize the time-dependent friction, it is convenient to be able 

to calculate the correlation times of the friction decays.  However, because of noise 

present in these decays, the times calculated by straightforward integration will not be 

sufficiently accurate.  Nevertheless, these times can still be accurately calculated 
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Figure 2.19: Time-Dependent Rotational and Translational Friction Functions.  The 
time dependent friction is averaged into low, mid, and high density decays as 
described in the text.  The low density decay is plotted with a solid line while the mid 
and high density decays are plotted with broken and dotted-dashed lines respectively. 
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without using the explicit time-dependent decays. The correlation time, τζ, is related 

to the integral friction, ζ , through the relation 0/ζζτ ζ = , where ζ0 is the time-zero 

friction (i.e. the amplitude of ζ(t) at t = 0).  The amplitude, ζ0, can be calculated from 

eq. 2.16.  At t = 0, there is no difference between the random and real forces so the 

amplitude can be obtained directly from simulation.  Insofar as the integral time is 

concerned, by taking the limit of eq. 2.14 at zero frequency it can be shown that ζ = 

τω-1.  Therefore, the friction decay is not needed in order to obtain the correlation 

time.  Clearly, such a characterization is not very complete in that it ignores the 

detailed time evolution of the friction decay.  However, insofar as the dynamics of 

interest are diffusive, the approximation is justified in that these dynamics are 

governed by the integral friction.  It is therefore necessary to take a short diversion in 

order to establish to what extent this picture is an accurate representation of the 

rotational behavior of DPB and HMS in CO2. 

 Rotational correlation functions for diffusive dynamics can be obtained via 

the following relations46, 

( ) ( ) ( )[ ]tDDtC rot αα −−= 3exp1                                       (2.25) 

( ) ( ) ( ) ( )[ ]
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where Drot is the average rotational diffusion coefficient and Dα is the rotational 

diffusion coefficient for the α principle axis, which can be obtained via the Stokes-

Einstein-Debye relation24 

αα
α ζI

kTD = .                                                  (2.28) 

Shown in Figure 2.20 are the ratios of correlation times predicted for the limit to 

those determined by simulation.  In general, the simulated correlation times are larger 

than those obtained assuming purely diffusive behavior.  However, for reduced 

densities of 0.5 and higher, these deviations are less than 20%, suggesting that a 

diffusive description of rotational motion is valid for all but the lowest density 

simulated.  In addition to the correlation times, the decays of the correlation functions 

are shown in Figure 2.21 (the diffusive calculations have be shifted for clarity).  For 

the x principle axis, reduced densities of 0.63 to 2.0 are plotted and for the y and z 

principle axes, correlation functions are shown for reduced densities of 1.0 to 2.0.  

For ( )2
xC , the diffusive calculation predicts an effectively exponential decay that is 

well reproduced by simulation.  Similarly, the simulated ( )2
yC  and ( )2

zC  correlation 

functions show a decay which follows the bi-exponential prediction of eq. 3.4 to 

within estimated uncertainties.  Therefore, a diffusive description of rotational motion 

again seems to be valid.  It should also be stated that all of the L = 1 correlation 

functions, which are not shown, are all well described by single exponential functions 

in the diffusive limit as well as by simulation.  For the lowest densities, the shapes of 

the diffusive decays are not reproduced by simulation, as might have been anticipated 
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Figure 2.20: Ratio of Correlation Times From Simulation and Diffusive Predictions.  
The ratios of the x, y, and z correlation times are plotted with open circles, open 
squares, and filled triangles respectively.  The diffusive calculations are as described 
in the text.  For clarity, only the error bars for the z-components are displayed. 
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from Figure 2.20.  Because the coupling between angular variables is not anticipated 

to change significantly with density, the dominating contribution to the error is 

attributed to the fact that the diffusive description ignores the detailed time 

dependence of the friction, and not to the fact that an approximate GLE is used.  

Therefore, as hoped, a diffusive picture is reasonable approximation and focus is now 

returned to the characterization of the solvent friction. 

 Shown in Figure 2.22 are the components of the solvent friction (the 

translational case is treated analogously to the rotational case).  In the top left panel, 

the integral friction is plotted along with the scaled coordination number (note that 

the x component of the integral friction is also scaled for clarity).  As expected from 

the orientation times, the rotational integral friction is linear in the bulk density, as is 

the translational friction constant.  Obviously, the curvature seen in the coordination 

number is not mimicked in the integral friction as physical intuition would have 

suggested.  However, the friction amplitudes, upper right plot of Figure 2.22, do show 

the same non-linearity as does the coordination number, indicating that the 

amplitudes are sensitive to the density enhancement around the solute.  This point is 

more quantitatively displayed in the bottom left panel.  Here, the ratio of the 

coordination number to the friction amplitude, normalized to its value at a reduced 

density of 2, is plotted as a function of density.  Although some variation is seen, the 

difference is everywhere less ±5%, except for the z component of the friction 

amplitude.  The larger departure shown by the z component of the integral friction, is 

understandable because isolated rotation of the solute about the z axis in the 
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Figure 2.22: Components of Friction.  In all cases, the x, y, and z components of the 
friction are plotted as filled circles, open squares, and filled triangles respectively.  
The panels labeled ζ, and ζ(t = 0)  contain the integral friction and the time-zero 
friction amplitude respectively.  The panel label ζ(0)/N1 show the ratio of the 
coordination number to the time-zero friction amplitude, normalized to the ratio at a 
reduced density of 2.  The final panel, labeled as τζ, shows the density dependent 
correlation time of the friction decays.  Here, the translational components are plotted 
as open diamonds. 
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molecular reference frame is relatively ignorant of any effects of density 

enhancement (see Figures 3.6 and 3.7).  The fact that the friction amplitudes have the 

same qualitative density dependence is understandable because, as has already been 

discussed, the short time behavior of the friction decay is due to binary solute-solvent 

repulsive interactions.  Therefore, solvent molecules outside the first solvation shell 

contribute insignificantly to the friction amplitude. 

 As a final aspect of the solvent friction, the correlation times of these decays 

are considered in the bottom right panel of Figure 2.22.  Here, it is shown that the 

correlation times are increasing functions of density.  Returning to Figure 2.19, it has 

already been shown that the initial friction decays are relatively invariant to the bulk 

to the bulk density.  As a result, the density dependence of the integral friction can be 

attributed to differences in the long time tails of these correlation functions.  Again, 

the long time behavior is a result of the collective attractive solute-solvent 

interactions.  Therefore, the linearity seen in the integral friction is not suggesting that 

the rotational and translational dynamics are ignorant of the local density 

enhancement.  Instead, it is a cancellation effect between the rapidly fluctuating 

binary solute-solvent repulsive interactions and the slowly varying collective solute-

solvent attractive interactions that brings about the linearity seen in the integral 

friction. 
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VI. Conclusion 

 The current study has explored the solvation structure and rotational dynamics 

of DPB and HMS in CO2.  Insofar as the solvation structure is concerned, it was 

shown that both DPB and HMS show evidence of local density augmentation.  This 

augmentation was shown to be localized above and below the molecular plane of both 

solutes.  In addition, although hydrogen bonding was seen in the HMS/CO2 system, 

the net effect is negligible when compared to augmentation seen elsewhere.  Two-

molecule Monte Carlo simulations showed that although the hydrogen bonding 

structure between HMS and CO2 is the global minimum on the intermolecular 

potential energy surface, there are many other minima within 1-2 kT of the global 

minimum.  Also, DPB induced slightly less augmentation than HMS.  In light of the 

two-molecule Monte Carlo calculations, the source of this difference was determined 

to be the larger atomic charges on the fluorophore atoms of HMS with respect to 

DPB. 

In order to gauge the accuracy of the simulation predictions, spectral shifts 

were computed and compared to experimental measurements.  Although the 

normalized experimentally determined spectral shifts agreed with simulation to 

within uncertainties, the systematic underestimation of the experimental shift by 

simulation is some cause for concern, as this underestimation has been seen 

previously41.  The source of the error comes from the degree of non-linearity of the 

spectral shift in the bulk density; the experimental shifts are more non-linear than the 

simulated shifts.  The models used here to calculate spectral shifts are sums over 
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independent contributions from individual solvent molecules.  As such, the predict 

shifts that are simply proportional to the coordination number.  It is likely that this 

observed proportionality is the cause of the disagreement between experiment and 

simulation.  The current simulated shifts are completely additive, whereas a more 

thorough treatment would involve non-additive contributions42.  By including such 

contributions, Stratt and Adams43  showed that this leads to about a 10% increase in 

the calculated augmentation.  It will be the focus of future work to include these 

contributions in the simulation model. 

 The simulated rotation times of DPB and HMS were found to be 1) linear in 

the bulk density and 2) nearly equivalent to each other.  These simulation results, 

while not inconsistent with the experimental work of Biswas et al., showed poor 

agreement with the experimental results of Anderton and Kauffman8.  Although the 

simulated rotation times of DPB may arguably agree, to within uncertainties, with the 

values reported by Anderton and Kauffman, the corresponding rotation times of HMS 

differ considerably.  In particular, simulation does not predict the large degree of non-

linearity seen in the experimentally measured rotation times of HMS.  Anderton and 

Kauffman ascribe this non-linearity to clustering about HMS induced by hydrogen 

bonding.  Simulations of the solvation structure show that, within the context of the 

simulation models, hydrogen bonding plays a small role in the overall solute-solvent 

energetics.  Therefore, the effect of hydrogen bonding on rotational dynamics is 

expected to be nominal.  Better agreement between simulation and experiment is seen 

when compared to the measured rotation times of Biswas et al.  These measured 
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rotations times for DPB and HMS are not inconsistent with a linear density 

dependence and these times agree with simulation within uncertainties.  More 

importantly, the rotation times of Biswas et al. are similar for both DPB and HMS.  

This similarity is predicted by simulation, but not by the rotation times of Anderton 

and Kauffman.  Due to the more direct nature of the measurement made by Biswas et 

al., these times are preferred.  Therefore, the conclusion is that there is not much 

different about the rotational dynamics between these two solutes. 

 The most interesting aspect of this work comes from the investigation of 

solvent friction.  The friction is used characterize the rotational environment of the 

solutes.  Because the rotational environment of the solute is almost exclusively 

determined by the 1st solvation shell distribution, it is reasonable to conclude that the 

rotation times of the solutes should report on the local density enhancement.  

Simulation results showed that, contrary to physical intuition, the integral friction is 

linear in the bulk density and not the local density.  By decomposing the friction into 

a friction amplitude and an integral time, it becomes clear why the rotation times are 

seemingly ignorant of the local density enhancement.  Namely, this decomposition 

showed that the amplitudes did mimic the non-linearity of the coordination number.  

In addition, correlation times of the time-dependent friction also showed a non-linear 

density dependence.  The variation in the amplitude was shown to be a result of short-

ranged, binary solute-solvent interactions and the variation in the friction correlation 

time was shown to be a result of the long-ranged, collective solute-solvent 

interactions.  As a result, it was shown that it is the cancellation of these two effects, 
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namely the attractive and repulsive parts of the solute-solvent intermolecular 

potential, which produces the observed linearity of the rotation times, and therefore, 

the observed rotation times are only seemingly ignorant of the local density 

augmentation. 
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Chapter 3 
 
 
 

Modeling the Electronic Spectral Shifts of Anthracene in Liquid Solvents 
 
 
 

I. Introduction 

Clearly, without a comparison to experiment, the accuracy of simulation 

results cannot be gauged.  This connection, between experiment and simulation, is 

often made by spectroscopic investigation.  In solution, experimental electronic 

spectral shifts can be used to characterize both the local solvent environment as well 

as solute dynamics, and therefore supply a wealth of information that can be 

compared with simulation predictions.  From a simulation standpoint however, 

spectral shifts are not easily attainable, as a rigorous computational treatment of the 

spectroscopy is still not practical in condensed phase systems.  Therefore, there is an 

ever present need for approximate models used to compute spectral shifts of solutes 

in solution. 

 One recent approach to modeling the spectroscopy of non-polar systems is to 

represent the exited state of the solute by the ground state Lennard-Jones functions 

with modified atomic radii and well depths1-4.  The motivation for such a heuristic 

approach is that if the ground state simulation trajectories are evolved on a Lennard-

Jones potential energy surface, then it is not unreasonable to assume that the excited 

state of the solute can be model by the same function, with the change in parameters 
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accounting for the change in the nuclear and electronic polarizabilities of the solute in 

the excited state. 

 The current chapter investigates the use of such an approach to model the 

spectroscopy of anthracene in a wide range of solvents.  Section II A describes the 

details of how spectral shifts are calculated from simulation data.  In Section II B, the 

solvent models used here are described along with some tests of their accuracy for 

representing the pure solvents.  Section III B discusses the general predictions of the 

spectral shift model.  Specifically, how changes to the model parameters influence the 

spectral shifts and widths is examined for a typical case.  The results obtained by 

fitting the model parameters are then presented and discussed in Section III C.  This 

section starts with a discussion on the predictions of the simulated absorption shifts 

and widths in solvents under ambient conditions.  The ability of the spectral shift 

model to account for the pressure-dependence of the experimental spectra in two 

solvents is also examined.  Finally, the model predictions for emission spectra are 

compared to experiment and the applicability of such calculations as a whole are 

discussed within the framework of linear response 

 

II. Methods 
 
A. Spectral Shift Model 

 Experimentally, the absorption shift is defined by 

( ) ( )gas
0,1

soln
0,10,1 ννν ∆−∆=∆h                                              (3.1) 
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where ( )soln
0,1ν∆  is the spectral shift of the solute in solution and ( )gas

0,1ν∆  is the 

analogous quantity in the gas phase.  The corresponding expression for the emission 

shift can be obtained by interchanging the subscripts 0 and 1 in eqn. 3.1.  In addition 

to the shifts themselves, the widths of the absorption and emission peaks in 

experiment and simulation are compared.  The widths are significant in that they 

report on the distribution of interactions about the solute. 

 The starting point for the spectral shift calculations performed in this chapter 

is the definition of the Lennard-Jones solute-solvent site-site interaction potential, 

( ) ( ) ( )
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where ε and σ are the interaction well depth and diameters respectively and S is the 

electronic state of the solute.  The convention adopted in this chapter is that Greek 

and Latin indexes correspond to solute and solvent atoms respectively.  The 

absorption shift can be written as, 

( ) ( )[ ]
0

01
0,1 ∑∑ −=∆

α
ααααν

i
iiii rUrUh                                    (3.2) 

and the definition of the square width is given as, 

( ) ( ) 2
0,1

2
0,1

2
0,1 νννδ ∆−∆=∆                                       (3.3) 

where the angular brackets denote the ensemble average and where it is understood 

that the corresponding emission shifts and widths can be calculated by interchanging 
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the subscripts 1 and 0.  Finally, the excited-state Lennard-Jones parameters used in 

eq. 3.1 are given in terms of the ground state parameters, 

( ) ( ) ( )

( ) ( ) ( )01

01

1

1

ii

ii

y

x

ααφα

ααφα

εδε

σδσ

+=

+=
                                                 (3.4) 

where x and y are scaling parameters, φ is a fluorophore atom on the solute (with 

respect to anthracene, the fluorophore atoms are the carbon atoms), and δ is the 

kronecker delta.  The scaling parameters, x and y, are optimized in order to obtain the 

best agreement between simulated and experimentally measured shifts and widths for 

a range of solvents. 

 Although the interaction potentials used to generate the simulated ground state 

trajectories are computed using the standard Lorentz-Berthelot combining rules, 
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it is computationally advantageous to adopt a different scheme for the calculation of 

spectral shifts.  If eq. 3.5 is used to define the two-body interaction potential, each 

variation in the scaling parameters x and y requires the analysis of the entire 

simulation trajectory for each solvent used in the fitting.  However, if a geometric 

mean is used to define both ( )S
iασ  and ( )S

iαε , 

( ) ( ) ( )
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=
                                                     (3.6) 
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the solute and solvent contributions to the shift and width can be factored, greatly 

reducing the amount of computation needed to generate the spectral shifts and widths.  

Taking eq. 3.6 as the combining rules, and defining 

( ) ( ) ( )( )
( ) ( ) ( )( )3
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the expression for the spectral shift is found to be 

( )∑ ∆+∆=∆
α

αααα ζων ZWh                                        (3.9) 
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and where ( ) ( )01
ααα ωωω −=∆  and ( ) ( )01

ααα ζζζ −=∆ .  Also, the expression for the 

average squared shift, which is needed to calculate the spectral widths via eq. 3.3, is  

( ) ( )∑ ∆∆+∆∆+∆∆=∆
α

βαβαβαβαβαβα ζζζωωων ZZZWWWh 22 .     (3.11) 

The advantage of using a geometric mean as the combining rules for both Lennard-

Jones parameters now becomes clear; the entire simulation trajectories only need to 

be analyzed once during the whole fitting procedure.  By computing and storing Wα, 
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Zα, WαZβ, WαWβ, Zα Zβ  averaged over solvent configurations, the shift and width can 

be easily recomputed for any value of the scaling parameters. 

 Operationally, absorption shifts are calculated as follows.  Simulate 

anthracene in its ground state in various solvents and collect the simulation 

trajectories.  From the simulated trajectories, form the sums listed in eqns. 3.10 and 

complete the appropriate averaging.  From and initial guess of x and y, use eqns. 3.4 

and 3.6 to calculate excited state Lennard-Jones parameters of the flurophore atoms 

on anthracene and then use eqns. 3.9 and 3.11 to calculate the absorption shift and 

width of anthracene in the various solvents.  The final step is to vary the scaling 

parameters, using a Levenberg-Marquardt5s minimization of χ2 (χ2 is a measure of 

the goodness of fit), in order to get the best simultaneous fit of the absorption shifts 

and widths across all of the different solvents.  In order to obtain the emission shifts, 

anthracene is simulated with the excited state parameters determined by fitting the 

absorption shifts.  By interchanging the subscripts 1 and 0 in eqns. 3.2 and 3.3, and by 

changing the sign of the scaling parameters, the simulated emission shifts and widths 

can be calculated.  It should be noted that there is no need for fitting here, as both the 

ground and excited state parameters for anthracene were determined from the 

absorption shifts. 

 

B. Simulation Models and Details 

The ground state geometry of anthracene was obtained via RHF calculations6 

using the 6-31G* basis set.  Ground state charges were obtained from Merz-Kollman-
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Singh (MKS) fitting of the MP2/6-31G(d) electrostatic potential.  Anthracene 

excited-state charges were obtained from ESP fits of AM1/CI calculations7.  Lennard-

Jones parameters of anthracene were taken from the OPLS parameterization of 

benzene8.  Solvent models of acetone9, acetonitrile (ACN)10,11, CCl412, CHCl3
9, CS2

13, 

cyclohexane (CHEX)14,15, dimethylsulfoxide (DMSO)16, n-hexane (NHEX)17, 

perfluoro-n-hexane (PFH)18, and tetrahydrofuran (THF)19 were selected from 

available literature models, based on their ability to reproduce liquid state 

thermodynamic properties.  The Lennard-Jones parameters of the solvent models can 

be found in Table 3.1 and the solute parameters and geometry can be found in Table 

3.2. 

 In the current work, two simulation models of both acetonitrile and 

cyclohexane were considered.  The first acetonitrile model, denoted ACN(1) was 

parameterized by Edwards et al. 10 in order to reproduce the dielectric properties of 

liquid acetonitrile.  The second model, denoted as ACN(2), was parameterized by 

Jorgensen and Briggs11 in order to reproduce thermodynamic and structural data of 

the pure liquid.  Both models, in an effort to improve computational efficiency, use a 

united atom representation of the methyl group.  The important difference is that the 

dipole moment of the Edwards et al. model, 4.14 D, is larger than the dipole moment 

of the simulation model used by Jorgensen and Briggs, 3.44 D.  As expected, the 

model of Edwards et al. does better at reproducing the experimentally measure dipole 

moment, 3.92 D20, as it is parameterized to reproduce the dielectric properties of 

liquid acetonitrile. 
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Solvent Legend Atom/Site σ (Å) ε / k (K) q (e) 
      

Acetone 1 C 3.75 53 0.300 
  O 2.96 106 -0.424 
  CH3 3.91 81 0.062 

ACN(1) 2a CH3 3.76 104 0.15 
  C 3.65 76 0.28 
  N 3.20 86 -0.43 

ACN(2) 2b CH3 3.60 191 0.269 
  C 3.40 50 0.129 
  N 3.30 50 -0.398 

CCl4 3 C 3.80 25 0.248 
  Cl 3.47 134 -0.062 

CHCl3 4 CH 3.80 40 0.420 
  Cl 3.47 151 -0.140 

CS2 5 C 3.35 51 0.000 
  S 3.52 183 0.000 

CHEX-UA 6a CH2 3.91 59 0.000 
CHEX-AA 6b C 3.50 33 -0.12 

  H 2.50 15 0.06 
DMSO 7 O 2.80 36 -0.540 

  S 3.40 120 0.540 
  CH3 3.80 148 0.000 

NHEX 8 C 3.50 33 -0.180 / -0.120 
  H 2.50 15 0.060 

PFH 9 C 3.50 33 0.360 / 0.240 
  F 2.95 27 -0.120 

THF 10 O 3.00 86 -0.500 
  RCH2-OR 3.80 59 0.250 
  -CH2-ROR- 3.91 59 0.000 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.1:  Solvent Parameters. 
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Atom X (Å) Y (Å) ε/k (K) σ (Å) q  (e) M (g/mol) ∆q (e) 

        
C -3.63 0.72 35.22 3.55 -0.11 12.01 0.01 
C -2.47 1.40 35.22 3.55 -0.22 12.01 -0.01 
C -1.21 0.71 35.22 3.55 0.14 12.01 0.01 
C 0.00 1.39 35.22 3.55 -0.30 12.01 -0.01 
C 1.21 0.71 35.22 3.55 0.14 12.01 0.01 
C 2.47 1.40 35.22 3.55 -0.22 12.01 -0.01 
C 3.63 0.72 35.22 3.55 -0.11 12.01 0.01 
C 3.63 -0.72 35.22 3.55 -0.11 12.01 0.01 
C 2.47 -1.40 35.22 3.55 -0.22 12.01 -0.01 
C 1.21 -0.71 35.22 3.55 0.14 12.01 0.01 
C 0.00 -1.39 35.22 3.55 -0.30 12.01 -0.01 
C -1.21 -0.71 35.22 3.55 0.14 12.01 0.01 
C -2.47 -1.40 35.22 3.55 -0.22 12.01 -0.01 
C -3.63 -0.72 35.22 3.55 -0.11 12.01 0.01 
H -4.57 1.24 15.10 2.42 0.13 1.01 0.00 
H -2.47 2.48 15.10 2.42 0.14 1.01 0.00 
H 0.00 2.47 15.10 2.42 0.15 1.01 0.00 
H 2.47 2.48 15.10 2.42 0.14 1.01 0.00 
H 4.57 1.24 15.10 2.42 0.13 1.01 0.00 
H 4.57 -1.24 15.10 2.42 0.13 1.01 0.00 
H 2.47 -2.48 15.10 2.42 0.14 1.01 0.00 
H 0.00 -2.47 15.10 2.42 0.15 1.01 0.00 
H -2.47 -2.48 15.10 2.42 0.14 1.01 0.00 
H -4.57 -1.24 15.10 2.42 0.13 1.01 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2:  Anthracene Parameters. 
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 Both cyclohexane simulation models employed in these simulations are a 

result of the OPLS parameterization by the Jorgensen research group.  The first 

cyclohexane model employed, denoted CHEX-UA, is a united atom representation14 

in which each CH2 group is modeled as a single interaction site.  The second model, 

denoted CHEX-AA, is an all-atom representation of cyclohexane15.  In addition to the 

obvious difference in the number of interaction sites, atomic charges are present in 

the all-atom but not in the united-atom representation, however, the effect of these 

atomic charges is negligible in the present simulations. 

 Prior to solute+solvent simulations, simulations of the neat solvents were 

performed in order to gauge the accuracy for reproducing the properties of these 

solvents under ambient conditions (298 K and 1 atm).  Each liquid was equilibrated 

from a lattice for at least 200 ps prior to four production runs of 100 ps each.  The 

number of molecules simulated for each system is listed in Table 3.3 and was chosen 

to provide approximately the same simulation size for all solvents (box length of 

about 34 Å).  All of the solvent models were rigid and the equations of motion were 

integrated with the DLPOLY21 program suite using quaternion parameters.  Periodic 

boundary conditions were imposed with a spherical truncation of Lennard-Jones 

interactions at 12 Å.  For dipolar solvents, an Ewald sum22 was used to represent 

long-range electrical interactions.  Solute+solvent simulations were performed under 

identical conditions.  For the production runs, however, simulation configurations 

were stored every 400 fs to allow for calculation of the spectral shifts. 
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Solvent Number Vm (sim) 
[cm3/mol] 

Vm (exp) 

[cm3/mol] 
Error 
(%) 

∆Hvap 
(sim) 

[kJ/mol] 

∆Hvap 
(exp) 

[kJ/mol] 

Error 
(%) 

        
Acetone 351 75 74 1.8 31.3 30.5 0.5 
ACN(1) 490 53 53 0 38.9 33.2 17.1 
ACN(2) 490 54 53 2.8 32.7 33.2 1.6 
CCl4 267 97 97 0.2 32.3 32.4 0.6 

CHCl3 322 80 81 0.4 31.7 31.3 1.5 
CS2 428 61 61 0.1 27.7 27.5 0.7 

CHEX-UA 239 106 109 2.3 35.7 33.3 7.2 
CHEX-AA 239 110 109 0.7 34.9 33.3 4.7 

DMSO 364 71 71 0.4 54.5 52.9 3 
NHEX 254 133 132 1.1 32.7 31.5 3.8 
PFH 255 207 201 2.7 31 32 3 
THF 355 81 82 0.9 32.5 31.8 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.3:  Liquid Simulation Results and 1 atm and 298 K.  Estimated uncertainties 
in the simulated molar volumes and enthalpies of vaporization are much less than 1% 
for all of the solvents listed, except for PFH where the uncertainty in the enthalpy of 
vaporization is about 12%. Experimental values were taken from Ref. 20.
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III. Results and Discussion 

A.  Checks on Solvent Models 

 Clearly, the accuracy of the spectral shift calculation depends, in part, on the 

faithfulness with which the solvent models reproduce the ground state energetics.  To 

judge their accuracy in this context, results of the pure solvent simulations are listed 

in Table 3.3.  The data here shows these models accurately reproduce experimental 

molar volumes, differing by about 3% at the maximum.  The enthalpies of 

vaporization, on the other hand, compare less favorably.  The acetonitrile model of 

Edwards et al. overestimates ∆Hvap by 17% while the model of Jorgensen and Briggs 

underestimates ∆Hvap by only about 2%.  This difference stems from the fact that the 

simulation models were parameterized to reproduce different characteristics of the 

pure fluid (the model of Jorgensen and Briggs was parameterized to reproduce the 

enthalpy of vaporization).  Although calculations based on both models of acetonitrile 

are presented, the model of Jorgensen and Briggs is preferred.  The simulation model 

of CHEX-UA also overestimates the enthalpy of vaporization, by about 7%.  Monte 

Carlo/NPT simulations14 of OPLS cyclopentane and benzene at STP show good 

agreement with experimentally determined vaules of ∆Hvap, and therefore, the 

expectation was that the model would be suitable for the present purposes.  The 

inclusion of explicit hydrogen atoms into the molecular description in CHEX-AA 

slightly reduces the error in the predicted enthalpy of vaporization.  This observation 

is not surprising, as the all atom model adds another 2 parameters that may be 

adjusted to better reproduce experimental results.  The literature has an abundance of 
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simulation potentials for cyclohexane23,24, however, the OPLS models, CHEX-UA 

and CHEX-AA, provide a good balance between accuracy and computational 

expense. 

 

B.  General Freatures of the Spectral Shift Model 

 Before looking at the results of fitting experimental data, it is instructive to 

look at the general behavior of the spectral shift model.  To accomplish this, 

anthracene+CHEX-UA is taken as a representative system, and the behavior of the 

shifts and widths is examined as a function of the scaling parameters x and y. 

 Plotted in Figure 3.1 are the iso-shift and iso-width contours of the 

anthracene+CHEX-UA absorption as functions of σ(1)/σ(0) and ε(1)/ε(0).  The behavior 

of the widths is readily understandable.  Namely, the global minimum occurs at 

(σ(1)/σ(0), ε(1)/ε(0)) = (1,1), where the difference potential is identically zero.  The oval 

contours of the width are elongated along the ε(1)/ε(0) axis because changes in the 

well-depth only serve to increase the curvature of the well, as opposed to changes in 

the atomic diameter which displace the global minimum the global minimum of the 

difference potential (This will be elaborated upon later).  The behavior of the shift 

contours is a little more subtle.  The contours correspond to a slightly parabolic 

surface in three dimensions.  Along the ε(1)/ε(0) axis, there are no extrema.  However, 

using eqn. 3.14, an extremum along the σ(1)/σ(0) axis is found at 
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Figure 3.1: Absoprtion Iso-shift and Iso-width Contours for Anthracene in CHEX-
UA.  Solution for best fit across solvents is shown with an “*”.  Iso-shifts and widths 
are shown in solid and broken lines respectively.  Units in cm-1.
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where ( )att
totU  and ( )rep

totU  are the total solute-solvent interaction energies arising from 

the r-12 and r-6 contributions to the ground state Lennard-Jones potential respectively.  

Therefore, the trough in the three dimensional surface occurs at eqn. 3.12 for any 

value of the scaling parameter y.  As with the widths, scaling the interaction well-

depth does not change the global minimum, and so the fact that there is a trough 

along the ε(1)/ε(0) axis is not very surprising.  These qualitative features not 

withstanding, the important observation here is that in general, the ε scaling 

dominates changes in the absorption shift whereas the σ scaling dominates changes in 

the absorption width. 

 The optimum scaling parameters, determined by fitting across all solvents, are 

denoted by the “*” in Figure 3.1.  In order to characterize the behavior of the spectral 

shift model about this point in σε-space, cross-sections of the shift and width surfaces 

are plotted in Figures 3.2 and 3.3 respectively.  In Figure 3.2, the change in the 

absorption shift is nearly linear for physically extreme changes in both σ and ε.  Also 

from this figure, it is more easily seen that changes in the well-depth have a more 

profound impact on the spectral shift than do the corresponding changes in the atomic 

radius.  Of course, as was already stated, the opposite is true when looking at 

variations in the width, as evidenced by Figure 3.3.  Here, the absorption widths are 

seen to pass through a minimum at (σ(1),ε(1)) < (σ(0),ε(0)).  However, in the region of 

the optimum solution for the scaling parameters, the change in the width is 

approximately linear in both x and y.  The main conclusion to be drawn is that while 

changes of σ/σ0 by ±0.01 and ε/ε0 of ±0.1 about the optimum solution do not change 
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Figure 3.2: Variation of the Absorption Shift of Anthracene in CHEX-UA with the 
Scaling Parameters  σ(1)/σ(0) and ε(1)/ε(0).  Dashed lines in upper panel denote extent of 
σ(1)/σ(0) scaling.
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Figure 3.3: Variation of the Absorption Width of Anthracene in CHEX-UA with the 
Scaling Parameters σ(1)/σ(0) and ε(1)/ε(0).  Dashed lines in upper panel denote extent of 
σ(1)/σ(0) scaling.
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the simulated widths by more than experimental uncertainties (about 30 cm-1)25, the 

same cannot be said for the uncertainties in the absorption shifts (about 50 cm-1)25.  

This result is important in that it comments on the behavior of the shift model when 

the optimum scaling parameters are determined during the course of the fitting 

procedure.  That is to say, uncertainties in the experimental spectral shifts, which 

dictate the search area in σε-space, correspond to a wide range of simulated shifts and 

therefore, experimental uncertainties in the shifts are far more damaging than 

uncertainties in the widths. 

At this point, it is instructive to take a deeper look at the absorption shifts and 

consider how they are composed of attractive and repulsive contributions.  In general, 

the spectral shift of a solute can be written in terms of the atom-atom radial 

distribution function as 

( ) ( )∑∑ ∫
∞

∆=∆
α

ααπρν
i

iii rgrUdrrh
0

24                               (3.13) 

where, once again, α runs over the solute sites and i runs over the solvent sites.  In the 

case of anthracene, all of the solute fluorophore atoms are identical.  Similarly, for 

CHEX-UA, all of the solvent atoms are identical.  Therefore, eqn. (3.13) can be 

simplified considerably, 

( ) ( )∫
∞

∆=∆
0

256 rgrUdrr vv φφπρν                                    (3.14) 

where φv refers to the fluorophore-solvent atom interaction pair.  The utility of eqn. 

3.14 is that it allows the total shift to be decomposed into contributions from the 
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attractive and repulsive parts of the Lennard-Jones difference potential26.  

Specifically, because r and g(r) are everywhere greater than zero, the differential 

form of eqn. 3.14 is only less than zero when the difference potential is less than zero.  

For CHEX-UA, the attractive and repulsive contributions to the shift are given by the 

expressions below, 

attrep hhh ννν ∆+∆=∆                                                (3.15) 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )∫

∫
∞

∞

−+=∆

−+=∆

R
v

att
vatt

v
rep
vrep

rgrUdrrxyh

rgrUdrrxyh

φφ

φφ

πρν

πρν

23

0

26

1156

1156
                          (3.16) 

where ( )( )rU rep
vφ  and ( ) ( )rU att

vφ  are the r-12 and r-6 components of the ground state 

Lennard-Jones interaction potential.  This dissection of the shift into attractive and 

repulsive contributions is depicted in Figure 3.4.  The top and middle panels of the 

figure show the radial distribution function and the difference potential for 

anthracene+CHEX-UA and the bottom panel shows the differential shift.  At small 

intermolecular separations, where the magnitude of the difference potential is large, 

the radial distribution function is relatively small, and hence so is the positive 

(“repulsive”) contribution to the shift.  As g(r) reaches its global maximum, the 

difference potential is approximately at it’s global minimum, thereby maximizing the 

negative (“attractive”) contribution to the shift.  Specifically, in the case of CHEX-

UA, the repulsive and attractive contributions are found to be -240 cm-1 and 1270 cm-

1 respectively.  While this is an interesting observation, the more important point is 

that the repulsive and attractive contributions to the spectral shift cannot be varied 
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Figure 3.4: Dissection of the Spectral Shift of Anthracne in CHEX-UA.  Plotted in the 
top and middle panels are the anthracene-CHEX-UA radial distribution function and 
Lennard-Jones interaction potential respectively.  Plotted in the bottom panel is the 
distance dependent differential shift. 
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independently.  That is to say, by scaling x or y, both the attractive and repulsive 

contributions to the spectral shift are also scaled.   

 As a final aspect of the general behavior of the spectral shift model, the line 

shapes of the absorption bands are examined.  Plotted in Figure 3.4 are the line shapes 

obtained when the scaling parameters are varied about the optimum value of 

(σ(1)/σ(0), ε(1)/ε(0)) = (0.02, 0.21) as depicted in Figure 3.1.  From the upper panel of 

Figure 3.4, the line shape of the absorption band with (σ(1)/σ(0), ε(1)/ε(0)) = (0.02,0.21) 

is seen to be approximately Gaussian.  As the scaling of the atomic size increases or 

decreases from this value, the line shapes become increasingly asymmetric, with an 

elongated tail.  This asymmetry is attributable to the asymmetry of the Lennard-Jones 

difference potential.  The bottom panel of Figure 3.4 shows the variation in line 

shapes with the scaling parameter y.  Because scaling ε(0) scales the well-depth, the 

symmetry of the difference potential in the region of the global minimum is only 

slightly affected, and therefore, changes in ε(1)/ε(0) do not have a dramatic effect on 

the shape of the absorption band. 

 

C.  Comparison to Experimental Spectra 

 With the general behavior of the spectral shift model well characterized, focus 

is now placed on how well these calculations reproduce experimental observations.  

Namely, the question asked is how well can a single parameterization of σ(1)/σ(0) and 

ε(1)/ε(0) predict the spectral shift of anthracene in various solvents? 
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Figure 3.5: Simulated Line Shapes of the Absorption Bands of Anthracene in CHEX-
UA.
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The comparison between experimental25 and simulated absorption shifts and widths is 

made in Figure 3.6 and in Table 3.4 with the scaling (σ(1)/σ(0), ε(1)/ε(0)) = (0.02, 0.21).  

At the outset, it should be mentioned that although the scaling factors of the 

fluorophore-solvent interaction parameters are somewhat larger than others have 

employed1,3 (for example, Heidenrich et al.3 scaled the carbon-argon pair well-depth  

and diameter by 12% and 1%, respectively, in order to model the spectroscopy of 

perylene-argon clusters in the gas phase), the overall variation in parameters is still 

modest.  The correlation of experimental and simulated shifts thus calculated is 

shown in the upper panel of Figure 3.2.  With the exception of CS2 (#5) and PFH 

(#9), the error in the calculated absorption shifts is less than 20%.  The situation is 

similar when the experimental and simulated absorption widths are compared, as in 

the bottom panel of Figure 3.2.  However, in this case, the widths of CCl4(#3) as well 

as CS2 and PFH differ from the experimental measurements by more than 30%.  The 

estimated experimental uncertainties in the shifts and widths are 50 cm-1 and 30 cm-1 

respectively.  As a result, although the simulated shifts are generally beyond these 

uncertainties, the simulated widths generally are not.  In addition, the χ2 value 

determined during the fitting procedure was 4.12, and because χ2 much greater than 1 

implies that the difference between the experiment and simulation is outside the 

margin of statistical uncertainties, the general conclusion is that the simulated 

predictions do not agree with the experimental measurements.  However, it is not 

clear whether better agreement with experiment is to be expected.  In particular, 

although simulations of the pure solvents predict enthalpies of vaporiation and molar 
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Figure 3.6:  Correlation of Experimentally Measured and Simulated Absorption Shifts 
and Widths.  The CS2 data was not included in the fitting but are included as 
predictions.  Experimental uncertainties in the shifts and widths are ±50 cm-1 and 
±20 cm-1 respectively. Estimated uncertainties in the simulation data are less than 1% 
of the value.  Labeling scheme can be found in Table 3.1.  Experimental data is from 
Ref. 25.
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solvent 
∆ν (exp) 

 cm-1 
∆ν (sim) 

 cm-1 
error 

% 
δ∆ν (exp)  

cm-1 
δ∆ν (sim)  

cm-1 
error 

% 

       
Absorption ( x = 0.02, y = 0.21) 

CS2 1840 1250 32 160 140 13 
DMSO 1240 1050 16 160 130 17 
CCl4 1230 1020 17 170 120 30 

CHCl3 1170 1300 -11 160 150 7 
THF 1050 1000 5 140 130 6 

CHEX-UA 1000 1030 -3 120 120 -4 
CHEX-AA 1000 1000 -1 120 90 25 

acetone 940 900 4 140 130 8 
ACN(1) 930 1050 -13 140 150 -1 
ACN(2) 930 1080 -16 140 140 0 
NHEX 930 930 0 110 90 19 
PFH 460 690 -51 60 80 -24 

Emission ( x = -0.02, y = -0.21) 
DMSO 1530 1300 14 200 120 39 
CCl4 1440 1260 13 220 100 53 

CHCl3 1400 1600 -14 180 130 25 
THF 1240 1250 0 150 110 26 

CHEX-AA 1100 1260 -14 130 110 11 
acetone 1180 1130 4 160 120 26 
ACN(1) 1170 1300 -11 160 120 25 
ACN(2) 1170 1340 -15 160 130 20 
NHEX 1030 1110 -8 120 90 30 
PFH 500 840 -65 80 80 -1 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
Table 3.4: Experimental and Simulated Spectral Shifts and Widths.  Experimental 
values were taken from Ref. 25.
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volumes that are close to experiment, there is no measure of how well these 

simulation models capture the solute-solvent interactions present in the real systems.  

In addition, because modeling the spectral shift via a change in Lennard-Jones 

parameters is only an approximate model27, the degree to which these calculations 

can accurately reflect the excited state solute-solvent interactions is not known.  

Therefore, while a uniform parameterization of the solute Lennard-Jones parameters 

in the modeling of the excited state of anthracene is appealing, it cannot be stated for 

certain whether or not a uniform parameterization is beyond the abilities of the 

spectral shift model described here. 

 Insofar as CS2 and PFH are concerned, the rather large disagreements between 

experiment and simulation are not unanticipated.  In order to understand the possible 

sources of error in the spectral shift model, it is useful to view the observed shifts 

from a different perspective.  If the solvent is viewed as a dielectric continuum, and 

the solute is represented by a point dipole in a spherical cavity, the spectral shift may 

be written as28,29, 

( ) ( )[ ] ( )22 nBfnffA −−=∆ εν                                            (3.17) 

( )
2
1

+
−

=
x
xxf                                                         (3.18) 

where ε and n are the dielectric constant and the refractive index of the medium 

respectively.  Here, the factors A and B are fit parameters and have been determined 

to be 170 cm-1 and 4100 cm-1 respectively.  Moreover, because B is almost 25 times 

as large as A, the electronic polarizability is by far the dominating contribution to the 
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overall shift.  As a result, the omission of the nuclear polarizability in the present 

description of the spectral shift, eq. 3.9, is not at all damaging. However, to be as 

accurate as possible, the small correction for the nuclear polarizability has been 

subtracted from the experimentally determined spectral shifts prior to fitting the 

scaling parameters x and y and these adjusted values are already reflected in Table 

3.4. 

Plotted in Figure 3.7 is the correlation of dielectric continuum predictions and 

experimentally measured30,31 absorption shifts.  The majority of the solvents are well 

described by a single correlation.  On the other hand, predictions for CS2 are 

underestimated by a large amount. It is left as a curiosity that the spectroscopic 

behavior of CS2 apprears to be distinct from that of the other solvents, and therefore, 

the experimental shifts and widths are not included in the parameterization of the 

scaling parameters in eqns. 3.4.   In addition to CS2, the perfluorinated solvents are 

also seen to exhibit a fundamentally different spectroscopic behavior from the 

majority of the solvents plotted in Figure 3.7, although as group, these prefluorinated 

solvents are well represented by a single correlation.  This observation is not new31-33  

and it has been suggested that the different behavior seen in perfluorinated solvents 

derives from a different balance of repulsive and attractive contributions to the solute-

solvent interactions relative to their hydrogenated analogues32.  Although these 

differences are known to exist, they are important in the parameterization of the 

scaling variables x and y because they test the spectroscopic model’s ability to 

account for a wide range of shift magnitudes. 
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Figure 3.7:  Correlation of Experimentally Measured Absorption Shifts Using a 
Dielectric Continuum Theory.  CS2 and perfluoronated solvents are represented by 
filled squares and filled triangles respectively.  All other solvents are represented by 
circles.  Non-polar solvents, aprotic solvents, and alcohols are plotted as black, grey, 
and open symbols respectively.  Experimental data is from Refs. 30 and 31.
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Regardless of the special cases of CS2 and PFH, the spectral shift model as a 

whole is clearly failing to capture the range of different solute-solvent interactions 

spanned by the various solvents, at least within experimental uncertainties.  

Therefore, the attractive and repulsive contributions to the spectral shift (eqn. 3.16) 

are examined for all of the solvents, in the hopes that it will shed further light on 

possible source of error.  The repulsive and attractive contributions are shown in 

Table 3.5.  With the exception of CHEX-AA, NHEX, and PFH, the average repulsive 

contribution to the shift is about 260 cm-1 with a standard deviation of about 13% and 

the average attractive contribution is about 1332 cm-1 with a standard deviation of 

about 11%.  Considering only CHEX-AA, NHEX, and PFH, the averaged repulsive 

and attractive contributions are 68 cm-1 and 941 cm-1.  Clearly then, the solvents can 

be sorted into two groups based on the ratio of repulsive to attractive contributions of 

the spectral shift.  The most obvious difference between these two groups is that the 

simulation models of CHEX-AA, NHEX, and PFH all have hydrogen atoms modeled 

explicitly, whereas the other solvent models, where applicable, use the OPLS united 

atom representation.  As a result, it would seem that the breaks down into attractive 

and repulsive contributions is quite sensitive to the specific solvent model chosen, 

despite the fact that the net shifts and widths are not. 

Because simulation data is available for both united atom and all-atom models 

of cyclohexane, these models are compared in order to resolve the differences seen in 

their spectroscopic behaviors.  The attractive contribution to the spectral shift of 

anthracene in CHEX-UA and CHEX-AA differ by about 13% whereas the repulsive 
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Solvent 
 

∆νtot 
cm-1 

∆νrep 
cm-1 

−∆νatt 
cm-1 

∆νatt / ∆νrep 
 

     
acetone 900 200 1110 5.5 
ACN(1) 1040 290 1330 4.7 
ACN(2) 1070 300 1370 4.6 
CCl4 1020 220 1230 5.7 

CHCl3 1300 300 1590 5.4 
CHEX-UA 1030 240 1270 5.4 
CHEX-AA 1010 80 1090 13.4 

CHEX-AA: C-C 640 10 650 65.1 
CHEX-AA: C-H 370 80 450 5.5 

CS2 1240 280 1520 5.5 
DMSO 1050 280 1320 4.8 
NHEX 930 70 1000 14.3 
PFH 690 50 740 14.1 
THF 1000 250 1250 5.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.5:  Decomposition of the Spectral Shifts into Attractive and Repulsive 
Contributions.  CHEX-AA: C-C denotes the shift contribution from the solute-solvent 
carbon-carbon pair interaction. CHEX-AA: C-H denotes the shift contribution from 
the solute-solvent carbon-hydrogen pair interaction.
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contribution differs by about 60%.  Therefore, focus is placed on understanding the 

short ranged spectroscopic differences between these two solvent models.  Shown in 

Figure 3.8 is the decomposition of the spectral shift for CHEX-UA and CHEX-AA.  

Insofar as CHEX-AA is concerned, the explicit modeling of the hydrogen atoms of 

the solvent serves to distance the solute-solvent carbon-carbon separation with respect 

to CHEX-UA, as evidenced by the plots of the radial distribution functions.  

Moreover, the slope of gC,H(r) departs from zero more slowly than does gC,ME(r).  

Even if the gC,H(r) and gC,H(r) are averaged, the early behavior gC,H(r) still dominates 

the rise from zero.  It is precisely this fact, namely that CHEX-UA overestimates the 

steepness of the repulsive part of the potential, which gives rise to the greater 

repulsive contribution to the spectral shift of anthracene in CHEX-UA relative to 

CHEX-AA.  Therefore, although the united atom models qualitatively capture, in an 

average sense, the component of the spectral shift derived from attractive 

intermolecular interactions, the short-distance repulsive contribution is not well 

reproduced.  It would then seem that for the present purposes, the all atom model 

solvent model is preferable. 

 As mentioned earlier, although a single parameterization of the anthracene 

Lennard-Jones scaling factors is desired, the spectroscopic modeling embodied in 

eqns. 3.9 and 3.11 cannot account for all of the variations in solute-solvent 

interactions as depicted in Figure 3.2 and Table 3.4.  Therefore, it logical to ask 

whether or not the current spectroscopic model can account for the pressure 

dependent spectral shifts, where the intermolecular potential function does not vary. 
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Figure 3.8: Dissection of the Spectral Shift of Anthracene in CHEX-UA and CHEX-
AA. Shown in the top and middle panels are the radial distribution functions and the 
interaction potential for anthracene-cyclohexane respectively.  Shown in the bottom 
panel is the distance dependent differential shift.  The united atom representation is 
plotted with a solid line.  The all atom hydrogen and carbon contributions are plotted 
with dotted-dashed and dashed lines respectively. 
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 The correlation of the pressure dependent absorption shifts and widths of 

anthracene in CS2 and n-hexane are shown Figure 3.9 and Table 3.6.  Here, simulated 

pressures of 0.001, 5, and 10 kbar are compared with experimental results34,35.  For n-

hexane, good agreement is found between the experimentally measured absorption 

shifts and those predicted by simulation.  For all three pressures, the errors in the 

simulated shifts are less than 6% while the errors in the widths are less than 15%.  

However, for CS2, the situation is quite different.  Clearly, simulation underestimates 

both the experimental shifts and widths of anthracene in CS2 by a significant amount.  

Re-parameterization of the scaling factors, using the density dependent CS2 data, 

reduces the error in the simulated shifts, however, only slightly improves the 

correlation of the absorption widths.  It is only when x is forced to be less than zero in 

the density dependent re-parameterization of the scaling factors that the correlation of 

both the shift and width in CS2 improves markedly.  From a physical standpoint, it is 

not clear why decreasing the atomic size of the fluorophore atoms on anthracene 

should help the shift and width correlation seen in Figure 3.9.  However, from the 

previous discussion of the differential shifts, it can be argued why this might be the 

case in the context of the present spectral shift model.  For the scaling parameters 

(x,y) = (-0.08,0.7370), the inequality 

( )
( ) 111

111
0 3

6

−++

−++
>

xy
xy

                                                 (3.19) 

holds true.  As a result, the fluorophore-solvent difference potential is everywhere 

less than zero, and therefore, entirely attractive.  In terms of the differential shift, this 
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Figure 3.9:  Correlation of Pressure Dependent Absorption Shifts and Widths of 
Anthracene in CS2 and n-hexane. n-hexane and CS2 data are displayed with circles 
and triangles respectively.  Filled symbols represent predictions based on solvent 
parameterizaion of the scaling factors.  Grey and open symbols denote predictions 
based on re-parameterization of the scaling factors for the density dependent data 
forcing σ(1)/σ(0) > 1 and σ(1)/σ(0) < 1  respectively (σ(1)/σ(0) < 1 not computed for n-
hexane).  Experimental data is from Refs. 34 and 35.
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result implies that there is no positive contribution to the total absorption shift and 

hence, suggests that spectral shift model overestimates the repulsive contribution for 

the density dependent parameterization of CS2 when x > 0.  As the density of the 

system is increased, the short distance rise in the radial distribution function becomes 

steeper, thereby increasing the repulsive contribution to the absorption shift in CS2 

when x > 0.  As a result, the simulation model increasingly underestimates the shift at 

high densities.  This behavior is clearly seen in Figure 3.9.  It is hypothesized that 

because the repulsive contribution to the spectral shift is small in n-hexane (Table 

3.5), x does not have to be less than zero because the differential shifts is almost 

exclusively attractive. 

 As a test of the spectroscopic model in the excited state, the predictions for 

anthracene emission are examined.  For these calculations, trajectories in equilibrium 

with S1 are used where the S1 parameters of anthracene are defined eqns. 3.4 and 3.5 

with the scaling parameters shown in Table 3.4.  Results are plotted in Figure 3.10 

and listed in Table 3.4.  The simulated emission shifts differ from experiment by no 

more than 15%, which would suggest that the current modeling of the excited state 

potential energy surface of anthracene is at least approximately correct.  On the other 

hand, with the exception of cylcohexane, the emission widths agree to no better than 

25%.  In addition, it is interesting to note that simulation predicts the widths to be 

larger in absorption, than in emission, whereas in experiment, the opposite 

relationship is observed.  This result, however unfortunate, sheds some light on the 

deficiency of the spectroscopic model.  Insofar as the emission shifts are concerned, 
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Figure 3.10:  Correlation of Experimentally Measured and Simulated Emission Shifts 
and Widths. Experimental uncertainties in the shifts and widths are ±50 cm-1 and ±30 
cm-1 respectively. Estimated uncertainties in the simulation data are less than 1% of 
the value.  Labeling scheme can be found in Table 3.1.  Experimental data is from 
Ref. 25.
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the implication is that the global minimum of the solute-solvent excited state potential 

energy surface is to a good approximation captured by the current spectroscopic 

modeling defined by eqns. 3.9 and 3.11.  Conversely, because the simulated emission 

widths vary significantly from the experimental measurements, it may be the case that 

a Lennard-Jones function is not suitable for reproducing the curvature of the potential 

energy surface in the neighborhood of the global minimum.  As a result, the 

agreement seen in the absorption and emission shifts while qualitatively satisfying, 

suggests eqns. 3.9 and 3.11 is not an accurate representation of the solute-solvent 

interactions in the excited state. 

 As a final test of the spectral shift model, the linear response predictions of the 

experimental and simulated data can be compared.  If excited state of the solute can 

be described as a small perturbation of the ground state, then the absorption and 

emission shifts can be related to the widths by the following equation4, 

( ) ννδνδ ∆∆=∆+∆ kTemabs 2                                         (3.20) 

where k and T are Boltzmann’s constant and temperature respectively, and where ∆∆ν 

is the Stokes shift, is defined by: ∆∆ν = ∆νem. – ∆νabs.  Plotted in Figure 3.11 is the 

comparison of the linear response estimates from experiment and simulation.  The 

proportionality between δ∆νabsδ∆νem and ∆∆ν was found to be 1.1kT and 0.58kT for 

experiment and simulation respectively.  Clearly, neither the experimental nor the 

simulation results are at the linear response limit, however, this is not a cause for 

concern.  The more important result is that the simulation spectral shift model is far 

more non-linear than the experimental results indicate it should be.  Although part of  
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Figure 3.11:  Linear Response Estimates from Experiment and Simulation.  
Experimental and simulation data are shown as filled and open symbols respectively.
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the deviation of the simulation model comes from the absorption data, the greater 

contributor to the smaller slope seen in Figure 3.11 is the behavior of the emission 

model.  Because the widths are directly related to the curvature of the difference 

potential in the region of the global minimum, these observations suggest that the 

repulsive contribution to the spectral shift is over-estimated.  The well of the 

interaction potential in the excited state is too narrow. 

In light of the above results, a thee effect of three modifications to the 

difference potential were explored.  The first involved allowing the parameters of the 

hydrogen atoms on anthracene to change upon excitation.  This modification allowed 

for two more scaling parameters in the fitting routine of the absorption shifts.  

However, this approach did little to improve the quality of fit for both the absorption 

shift and width correlations to experiment.  The next approach was to allow the 

atomic parameters of the solute carbon atoms to vary differently based on symmetry. 

Anthracene has 4 distinct carbon atom types which imply 8 different scaling factors.  

Once again, this modification did not significantly change the absorption correlations. 

The final attempt at modifying the spectral shift model employed the Mie 

potential,  
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instead of the standard Lennard-Jones function.  This potential can be considered as a 

generalized Lennard-Jones potential, which can be recovered  from eqn. 3.21 by 

choosing (n,m) = (12,6).  In the current implimentation, m is fixed at a value of 6, 
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while n was allowed to vary.  The Mie potential is advantageous in that the relative 

repulsive and attractive contributions can be varied by simply varying n and m.  This 

variation is shown in Figure 3.12, with the choice (σ,ε) = (1,1).  Although the ground 

state trajectories are evolved on the standard Lennard-Jones potential energy surface, 

the absorption shifts and widths were calculated from the Mie form using the same 

value of n in both the ground and excited states.  For values of n close to 12, little 

change was observed in the predicted absorption shifts and widths.  However, insofar 

as an accurate model of the excited state potential energy surface of anthracene is 

concerned, it is difficult to draw conclusions without the corresponding emission 

predictions from simulation.  What can be said definitively, though, is that the Mie 

potential does no better at incorporating the variety of solute-solvent interactions into 

a unified anthracene potential as does the standard Lennard-Jones function, which is 

used in the integration of the simulation trajectories. 

 

IV.  Conclusions 

 

 This chapter has explored using changes in the solute Lennard-Jones 

parameters to model the absorption and emission spectroscopy of anthracene in 

various solvents.  In Section B, the general behavior of the simulation model was 

investigated.  It was shown that while scaling ε dominated changes in the absorption 

shift, changes in the absorption widths are dominated by scaling σ.   By dissecting the 

absorption shifts into attractive and repulsive contributions, it was shown that the 
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Figure 3.12:  Scaled Mie Potentials for Several Values of n (m = 6).
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contribution from the attractive part of the Lennard-Jones potential is greater than the 

repulsive contribution, for the best fit x and y.  More importantly, the dissection 

showed that by modeling the spectral with a change in Lennard-Jones parameters, the 

attractive and repulsive contributions to the overall spectral shift cannot be varied 

independently.  In this section it was also shown that the line shapes of the absorption 

bands were more dependent on changes in the atomic diameters.  Scaling the well 

depths also has an effect on these line shapes, however, compared with changes in the 

atomic diameters, these changes are insiginificant. 

 The comparison of the experimental to simulated spectral shifts and widths 

showed that the spectral shift model embodied in eqns. 3.9 and 3.11 is unable to 

account for all of the differences in the solute-solvent interactions.  In particular, the 

shifts and widths of CS2 and PFH were shown to be especially difficult to predict.  

With respect to PFH, it was stated that others31-33 had observed that the spectroscopic 

behavior of solutes in perfluorinated solvents is fundamentally different from the 

behavior in the analogous hyrogentated solvents, possibly owing to a different 

balance of attractive and repulsive interactions.  In order to try to understand why the 

scope of different solute-solvent interactions was not captured by a single 

parameterizaion, the simulated absorption shifts were dissected into repulsive and 

attractive contributions.  Although this dissection did not shed additional insight into 

the root of the problem, it showed that the all-atom and united-atom models of 

cyclohexane behave fundamentally differently. 
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 Due to the fact that the spectral shift model is unable to account for a wide 

variety of interactions with a single parameterization of x and y, it was decided to see 

if the model could account for the pressure dependent behavior of the absorption 

shift, where the intermolecular potential parameters do not change.  For n-hexane, the 

absorption shifts and widths were well reproduced by the simulation model over a 

pressure range of 0.001 kbar to 10 kbar with x and y taken from the parameterization 

determined in the liquid solvent fits.  The predictions for anthracene in CS2 were 

considerably different from experimental values.  Re-parameterization of the scaling 

variables over the pressure dependent CS2 produced absorption shifts and widths 

which agreed well with simulation so long as x was chosen to be less than 0.  As a 

result, it was suggested that the spectral shift model with x > 0 overestimated the 

repulsive contribution to the absorption shift of anthracene in CS2. 

 The emission shifts were examined next, as they test the integrity of the 

spectral shift model in the excited state.  Using the excited state Lennard-Jones 

parameters determined by the scaling factors x and y, excited state trajectories were 

computed and the emission shifts were calculated by changing the sign of these 

scaling factors.  Qualitative agreement with experimentally determined emission 

shifts was obtained.  The emission widths, on the other hand, compared less 

favorably.  Examination of the linear response predictions showed that both 

experimental and simulated shifts and widths were far from the linear response limit.  

It was then concluded that because the emission shifts are reasonable well reproduced 

by simulation, the global minimum of the solute-solvent potential energy surface is 
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captured by the spectral shift model.  However, because the emission widths are 

underestimated in simulation, the curvature of the potential energy surface in the 

region of the global minimum is not capture by the current spectroscopic modeling; in 

particular, the width of the well in simulation is too narrow.  As a result, it was 

suggested that principle failure of the current spectral shift model is that it 

overestimates the repulsive contribution to the spectral shifts. 

 Finally, due to the apparent failure of the spectral shift model so far employed, 

variations on the spectral shift model were examined.  Allowing the solute hydrogen 

radii and well depths to change during the course of the fitting procedure did little to 

change the quality of fit of the simulated absorption data to the experimental data.  

Furthermore, allowing for different solute carbon atoms to scale independently, based 

upon symmetry, like-wise failed to improve the correlation between simulated and 

experimental absorption shifts and widths.  The last variation attempted was to use a 

generalized Lennard-Jones potential, the Mie potential, in the calculation of the 

spectral shifts and widths.  Once again, the absorption results were only marginally 

improved. 

 The main result of this chapter is that while the modeling the spectral shifts 

with a Lennard-Jones difference potential is appealing, a unique parameterization of 

the scaling factors apparently does not account for the wide variety of solute-solvent 

interactions.  However, it is also true that the solvent models used in simulation are 

parameterized to reproduce the characteristics of the bulk fluid, and therefore, it is not 

certain that the anthracene-solvent interactions present in the real system are 
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necessarily captured by simulation.  Arguable it may also be that the Lorentz-

Berthelot combining rules used in simulation are not an accurate representation of the 

pair solute-solvent interactions.  In addition, because the emission widths were found 

to be too small, it is most likely the case that the functional form of the difference 

potential is in error, and not the approach in general.  However, without further 

density dependent simulations and emission predictions, it will be difficult to 

speculate on the true utility of the approach. 
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Chapter 4 
 
 
 
Simulation Studies of Density Augmentation and Solvation in Anthracene/C2H6 

and Anthracen/CO2 Supercritical Systems 
 
 
 
I.  Introduction 

 The work contained in this chapter represents an extension of the work 

contained in Chapter 3.  In particular, focus is placed on the ability of the Lennard-

Jones shift model (eqns.3.9 and 3.11) to predict the spectral shift of anthracene in 

supercritical CO2 and ethane.  The motivation for this study comes from Chapter 2, 

where it was shown that the local solvent densities (the solvent densities in the 1st 

solvation shell) observed in simulations of DPB and HMS in supercritical CO2 were 

smaller than those deduced from experiment.  This observation appears to generally 

hold true when such comparisons are made to experimental estimates derived from 

electronic spectral shifts1.  Because most experimental information about local 

density is derived from electronic spectral shift measurements, it is critical that the 

source of this discrepancy be understood.  Two possibilities exist: First, if the 

experimental spectral shifts are proportion to the local density, as simple models 

would suggest, then simulation is simply underestimating the extent of density 

augmentation.  Alternatively, if the experimental shifts are not proportional to the 

local density, then simulation might be capturing the local density, and it may just be 
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that the interpretation of the spectral shifts is in error.   In either case, the answer to 

this question is of paramount importance. 

 The rest of the chapter is laid out as follows.  In Section II, details of the 

simulation models are given.  In Section III, the correlation between experimental and 

simulated absorption and emission shifts of anthracene in CO2 and ethane are 

examined.  Subsequently, the augmentation derived from these shifts, as well as other 

simulated observables are discussed.  In addition, the feasibility of using the Lennard-

Jones shift model is also examined in the context of weakly polar and non-polar 

systems.  Finally, the extent to which the simulated and experimental observables 

relate to the physical augmentation present in the system is investigated.  Finally, 

concluding remarks and possible future research avenues are given in Section IV.   

 

II. Solvent models and Simulation Details 

 Descriptions of the anthracene and CO2 simulation models can be found in 

Chapters 2 and 3 respectively.  For ethane, a diatomic united-atom model was taken 

from the work of Martin and Siepmann2, who optimized the parameters to reproduce 

the vapor-liquid coexistence curve.  These authors decided on values of 3.75 Å and 

98 K for σ and ε/k respectively, with a bond length of 1.54 Å. 

 Ground state simulations of anthracene in CO2 and ethane were performed in 

the NPT ensemble at a temperature of 310 K using a modified version of the 

DLPOLY3 program.  Constant pressure and temperature were achieved using a 

Hoover barostat and thermostat4.  CO2 simulations were conducted at 7 different 
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pressures, spanning a range of 5-33 MPa.  For ethane, 7 different pressures were also 

simulated, however covering a range of 3-22 MPa.  Simulations in CO2 and ethane 

contained 992 and 984 solvent molecules respectively.  In both solvents cubic 

periodic boundary conditions were applied, and the equations of motions were 

integrated at 2 fs intervals with a Verlet-type algorithm using quaternion parameters.  

For CO2, electrostatic forces were truncated at 12 Å5.  The solvent model of ethane 

has no atomic charges. 

Prior to production runs, each simulation was equilibrated for 1 ns.  

Subsequently, production runs of 4 ns were completed for each pressure.  Each 

production run was comprised of 8 runs, 500 ps in length, and statistics were 

collected every 10 fs.  Excited state simulations were performed under identical 

conditions to the ground state simulations.  The excited state anthracene Lennard-

Jones parameters were taken from Chapter 2.  In particular, the carbon atom 

parameters in the excited state were taken as 1.02σ(0) and 1.21ε(0), where σ(0) and 

ε(0) are the ground state values. 

 

III. Results and Discussion 

A.  Solvation Energies 

 Displayed in table 4.1 are the density dependent solute-solvent interaction 

energies of anthacene in CO2 and ethane.  In the ground state, the solvation energies 

in CO2 are about 14%-30% higher than in ethane.  This difference might be thought 

to arise due to the quadrupole-quadrupole interaction between CO2 and anthracene, 
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Table 4.1: Simulated Solvation Energies in CO2 and Ethane.  The columns labeled Ulj 
and Uel contain the solute-solvent Lennard-Jones and Coulombic interaction energies.  
The column labeled N1 denotes the number of atoms in 1st solvation shell.  Densities 
were taken from simulations of the pure solvents (Ref. 9) at the pressures listed in 
column 1.

Pressure 
MPa 

ρ/ρc 
 

-Ulj (S0) 
kJ/mol 

-Uel (S0) 
kJ/mol 

N1 (S0) 
 

-Ulj (S1) 
kJ/mol 

N1 (S1) 
 

       
CO2 

5.02 0.24 23 3 17 27 19 
7.90 0.55 44 4 35 51 37 
8.61 0.81 52 5 43 61 45 
8.89 1.11 60 6 50 71 53 
9.43 1.31 65 6 54 76 57 
13.30 1.63 73 7 61 83 62 
32.59 1.97 83 7 70 94 71 

C2H6 

3.26 0.24 19  8 24 9 
4.97 0.49 33  15 41 16 
5.61 0.72 49  22 62 25 
5.75 1.01 57  26 67 27 
5.85 1.24 59  27 67 27 
8.60 1.65 65  29 74 30 
22.23 2.01 74  33 84 34 
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which is not present in the case of the ethane solvent.  However, the Coulombic 

contribution to the ground state interaction energy in CO2 accounts for only about 

10% of the total interaction energy, which means that the Lennard-Jones contribution 

is about is still about 5%-25% higher than in ethane.  In addition, although the 

anthracene-CO2 interaction well-depth is, on average, smaller than the anthracene-

ethane well-depth, the coordination number is about 50% higher (the coordination 

number is defined here as the number of atoms in the 1st solvation shell6).  Therefore, 

the higher solute-solvent interaction energy in CO2 relative to ethane is a reflection of 

the fact that CO2 packs more efficiently around anthracene than does ethane. 

 In the excited state, the situation is similar.  The Lennard-Jones interaction 

energies are about 5%-20% and the coordination number is about 50% higher in CO2.  

Relative to the ground state simulations, the Lennard-Jones interaction energies 

increase by about 15% and 20% in CO2 and ethane respectively, however, there is a 

change of only about 5% in the coordination number at all but the lowest density.  

This observation is attributed to the fact that in the excited state, the fluorophore-

solvent contact radii are increased by 1% whereas the well-depths are increased by 

10%.  As a result, although there is little change in the coordination number, the 

significant scaling in the pair-interaction strengths leads to significantly increased 

solvation energies. 

 The density dependence of the solute-solvent interaction energies, as well as 

the coordination number, is displayed in Table 4.2.  Listed in this table are the ratios 

of the densities to the simulation observables.  Furthermore, these ratios have been 
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Table 4.2: Density Dependence of the Solvation Energies in CO2 and Ethane.  The 
tabulated values have been normalized to their high density ratios.  The columns 
labeled Ulj and Uel contain the solute-solvent Lennard-Jones and Coulombic 
interaction energies.  The column labeled N1 denotes the number of atoms in 1st 
solvation shell. 

ρ/ρc 
 

Ulj/ρ (S0) 
kJ/mol 

Uel/ρ (S0) 
kJ/mol 

N1/ρ (S0) 
 

Ulj/ρ (S1) 
kJ/mol 

N1/ρ (S1) 
 

      
CO2 

0.24 2.2 2.8 2.0 2.3 2.1 
0.55 1.9 2.1 1.8 1.9 1.9 
0.81 1.5 1.7 1.5 1.6 1.6 
1.11 1.3 1.3 1.3 1.3 1.3 
1.31 1.2 1.2 1.2 1.2 1.2 
1.63 1.1 1.1 1.1 1.1 1.1 
1.97 1.0 1.0 1.0 1.0 1.0 

C2H6 
0.24 2.1  2.1 2.4 2.3 
0.49 1.9  1.8 2.0 2.0 
0.72 1.9  1.9 2.1 2.1 
1.01 1.5  1.5 1.6 1.6 
1.24 1.3  1.3 1.3 1.3 
1.65 1.1  1.1 1.1 1.1 
2.01 1.0  1.0 1.0 1.0 
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 normalized to their high density values in order to facilitate a comparison between 

observables.  The fact that the ground state normalized ratios of N1 are not identical 

indicates that the coordination number is not proportional to density.  This 

observation reflects the presence of density augmentation, as the local solvent density 

changes at a different rate from the bulk density.  This same trend is observed in 

ground state ratio of Ulj in both CO2 and ethane.  However, because the ratios of Ulj 

are roughly equivalent to the ratios of N1, the solute-solvent interaction energy is seen 

to be linearly dependent on the local density, and as a result, it can be said that Ulj and 

N1 are proportional.  On the other hand, in CO2, the ratios of Uel are larger than the 

ratios of Ulj and N1, especially at lower densities.  This implies that Uel has a more 

non-linear density dependence than does the coordination number.  This can be 

understood in terms of the intermolecular potential functions.  To begin, the Lennard-

Jones potential is the dominating contribution to the solvation structure, and 

therefore, determines the radius of the 1st solvation shell.  In addition, because this 

potential is a short-ranged potential, the solute-solvent interaction energy is 

predominantly determined by the population of solvent molecules within the 1st 

solvent shell.   Furthermore, because the maximum in the radial distribution function 

almost coincides with the global minimum in the Lennard-Jones interaction potential, 

the contributions of all molecules in the 1st solvation shell to the total Lennard-Jones 

interaction energy are roughly similar, a proportionality between Ulj and N1 is not 

unanticipated.  With respect to the Coulomb potential, it is either everywhere positive 

or everywhere negative for a solute-solvent site-site interaction pair, depending on the 
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on the sign of the product charges.  As a result, there is some cancellation of 

contributions to the total electrostatic energy, and hence, Uel represents a more 

collective quantity than does the Lennard-Jones energy. 

 In the excited state simulations, the non-linearity of Ulj and N1 are slightly 

increased in both CO2 and ethane at lower densities, although the proportionality 

between them is preserved.  This observation is likely due to the fact that in the 

excited state simulations, there is an increase in the Lennard-Jones interaction energy. 

 

B.  Comparison of Spectral Shifts to Experiment 

 The comparison of the absorption shift calculations to experimental data7 is 

shown in Table 4.3 and Figure 4.1.  In both CO2 and ethane, the estimated 

uncertainties in the shifts and widths are about 50 cm-1 and 30 cm-1 respectively.  The 

simulated shifts in CO2 are within 10% of experiment at low to moderate densities, 

however, as the density is increased, the simulated shifts systematically overestimate 

experiment.  The predicted widths, on the other hand, show good agreement with 

experiment over the entire density range.  However, it should be noted that the 

uncertainty in experiment is about 25% of the measured width, and therefore, there is 

a large margin of error.  In addition, to within uncertainties, experimental absorption 

shifts in CO2 and ethane are nearly the same, with the shifts in CO2 being larger by 

about 10%.  Other things (i.e. the molecular polarizability) being equal, because CO2 

is quadrupolar, the spectral shift of anthracene in CO2 is expected to lead to slightly 

larger shifts.  However, because this difference should be small based on the strength 



 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Comparison of Experimental and Simulated Absorption Shifts in CO2 and 
Ethane.  ∆ν(exp) denotes experimental shifts from Ref. 7 and ∆ν(∆lj) denotes shifts 
from the simulation spectral shift model. 

ρ/ρc 
 

∆ν (exp) 
cm-1 

δ∆ν (exp) 
cm-1 

∆ν (∆lj) 
cm-1 

δ∆ν (∆lj) 
cm-1 

     
CO2 

0.24   193 88 
0.55 420 130 379 116 
0.81 460 130 456 118 
1.11 500 120 524 117 
1.31 510 120 573 111 
1.63 550 120 640 110 
1.97 610 120 724 111 

C2H6 

0.24   160 80 
0.49   290 100 
0.72 410 130 430 130 
1.01 450 130 500 100 
1.24 480 130 510 100 
1.65 590 110 560 100 
2.01 670 110 640 100 
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Figure 4.1: Comparison of Experimental and Simulated Absoprtion Shifts and 
Widths.  Experimental and simulation data are plotted with filled and open circles 
respectively.  Absorption shifts and widths are plotted with circles and triangles 
respectively.  Experimental data is from Ref. 7.
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of quadrupole-quadrupole coupling, it is expected to fall within experimental 

uncertainties.  Simulation, on the other hand, predicts the shift in CO2 to be up to 25% 

larger than in ethane.  However, this magnitude of error was previously observed with 

anthracene shifts in liquid solvents (Chapter 3), and therefore, it cannot be concluded 

that the increased shift in CO2, relative to ethane, is a significant result. 

 The results of the emission shift calculations and the comparison to 

experiment7 are listed in Table 4.4 and plotted in Figure 4.2.  These results are similar 

to what was seen with the absorption shifts, but emission shifts in both CO2 and 

ethane are overestimated by the simulations.  Given the performance of the model for 

predicting emission shifts in liquid solvents (Chapter 3), the level of agreement 

displayed here is not unexpected.  It is important to note that although the magnitudes 

of the experimental and simulated emission shifts may not agree numerically, they 

are, roughly speaking, proportional.  What this implies, then, is that although 

quantitative agreement is not achieved, simulation qualitatively captures the variation 

of the emission shift with density.  It is this density dependence that is most important 

for estimating local densities, as discussed next. 

 

C.  Local Density Augmentation 

 Recall that local density augmentation characterizes an increased solvent 

density in the vicinity of the solute relative to the bulk fluid.  This solute-induced 

density change can be loosely described as a clustering effect.  It is important to 

differentiate between the “effective” augmentation reported by an observable such as 
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Table 4.4: Comparison of Experimental and Simulated Emission Shifts in CO2 and 
Ethane. ∆ν(exp) denotes experimental shifts from Ref. 7 and ∆ν(∆lj) denotes shifts 
from the simulation spectral shift model. 

ρ/ρc 
 

∆ν (exp) 
cm-1 

δ∆ν (exp) 
cm-1 

∆ν (∆lj) 
cm-1 

δ∆ν (∆lj) 
cm-1 

     
CO2 

0.24   250 100 
0.55 430 140 480 120 
0.81 500 140 580 130 
1.11 550 130 680 130 
1.31 570 130 720 120 
1.63 610 130 790 110 
1.97 680 130 900 110 

C2H6 
0.24   230 100 
0.49 430 140 390 120 
0.72 500 140 590 120 
1.01 530 130 630 110 
1.24 570 140 640 110 
1.65 650 120 710 100 
2.01 720 120 800 100 
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Figure 4.2: Comparison of Experimental and Simulated Emission Shifts and Widths.  
Experimental and simulation data are plotted with filled and open circles respectively.  
Absorption shifts and widths are plotted with circles and triangles respectively.  
Dashed curves denote simulation absorption data.  Experimental data is from Ref. 7. 
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a spectral shift and the “physical” augmentation, defined directly in terms of solvent 

number densities.  It is chosen to define “physical” augmentation in terms of the 1st 

solvation shell coordination number, N1.  Mathematically, this is embodied in the 

following definition 

( )
ρ

ρ

ρ
ρρ

ρ

−







=−=

=2

1

1

d
dN

NLDA physphys                                      (4.1) 

where when ρ > 2, N1 is assumed to be proportional to the bulk density and ρphys is 

the local density of solvent molecules in the first solvation shell.  It can be seen from 

eqn. 4.1, that any observable that is proportional to the coordination number will 

report the same augmentation.  That is, quantitative agreement between observables is 

not necessary to obtain identical values for the augmentation, what is important is that 

they display the same normalized density dependence. 

 Local densities derived from experimental data depend on some assumed 

relationship between the observable and density in the absence of density 

inhomogeneities.  Although the relationship can be complicated, in the case of 

anthracene, it is expected that the electronic spectral shifts should be simply 

proportional to density8.  For the purposes of the present chapter, it can be assumed 

that the experimentally measured shifts should relate to augmentation in the manner 

described in eqn. 4.1 with N1 replaced with ∆ν.  Such effective LDA estimates will be 

examined next, using other simulation observables in addition to the spectral shifts.  

These effective estimates of LDA are defined by the following relation 
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where χ represents some system observable and when ρ > 2, χ is assumed to be 

proportional to the bulk density. 

 Listed in Table 4.5 and plotted in Figure 4.3 are the simulation results of the 

augmentation reported by different observables in CO2.  In the ground state 

simulations, the Lennard-Jones interaction energy is seen to report essentially the 

same augmentation as does the coordination number.  This is not surprising as these 

two observables were shown to be proportional in Table 4.2.  Moreover, there is also 

a proportionality between the spectral shift calculation and the number.  Because the 

spectral shift calculation is similar to the calculation of the Lennard-Jones interaction 

energy (i.e. they are described by the same expression), and because there is only a 

small scaling of the fluorophore-solvent contact radii, this result is not unanticipated.  

The largest departure from physical augmentation in the simulated system is seen in 

the Coulombic interaction energy, and the source of this non-proportionality between 

Uel and N1 was discussed above. 

 In the excited state simulations of anthracene in CO2, the Lennard-Jones 

interaction energy and the simulated emission shift report approximately the same 

amount of augmentation as does the coordination number.  In addition, when 

compared with the ground state simulations, roughly the same degree of 

augmentation is predicted, and because the coordination number changes, on average, 

by only 5% from the ground to the excited state, this result is not unexpected. 
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Table 4.5: Comparison of Augmentation Derived From Experimental Spectral Shifts 
and Simulation Observables.  The columns labeled Ulj and Uel contain the solute-
solvent Lennard-Jones and Coulombic interaction energies.  The column labeled N1 
denotes the number of atoms in 1st solvation shell. ∆ν(exp) denotes experimental 
shifts from Ref. 7 and ∆ν(∆lj) denotes shifts from the simulation spectral shift model. 

  S0   S1  
ρ/ρc ∆ν(exp) N1 Ulj Uel ∆ν(∆lj) ∆ν(exp) N1 Ulj ∆ν(∆lj) 

 
CO2 

0.24  0.25 0.29 0.44 0.28  0.28 0.32 0.31 
0.55 0.81 0.45 0.49 0.63 0.48 0.70 0.48 0.52 0.51 
0.81 0.67 0.42 0.43 0.53 0.44 0.66 0.45 0.47 0.47 
1.11 0.49 0.30 0.31 0.37 0.32 0.49 0.37 0.38 0.38 
1.31 0.34 0.23 0.24 0.27 0.25 0.36 0.27 0.27 0.28 
1.63 0.14 0.10 0.10 0.13 0.11 0.16 0.10 0.10 0.10 
1.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C2H6 
0.24  0.25 0.27  0.27 0.32 0.31 0.33 0.32 
0.49  0.40 0.42  0.41 0.49 0.48 0.49 0.49 
0.72 0.51 0.63 0.63  0.63 0.77 0.77 0.77 0.77 
1.01 0.33 0.55 0.55  0.57 0.58 0.58 0.58 0.58 
1.24 0.21 0.36 0.36  0.37 0.37 0.36 0.36 0.37 
1.65 0.11 0.11 0.11  0.12 0.12 0.12 0.11 0.12 
2.01 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 
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Figure 4.3: Augmentation Derived From Ground and Excited State Simulation 
Observables in CO2.  Augmentation from 1st solvent shell population (N1) and 
Lennard-Jones solute-solvent interaction energy (Ulj) are plotted with filled and open 
circles respectively.  Results of the simulation spectral shift model and the Coulombic 
solute-solvent interaction energy are plotted with filled and open triangles 
respectively.  Smooth curves are fits of the simulation data to a 4-parameter Weibull 
function. 
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In ethane, Figure 4.4 and Table 4.5, both the excited and ground state 

simulations show that the augmentation derived from both the spectral shift 

calculations and the Lennard-Jones interaction energies are similar to the coordination 

number.  However, in the case of ethane, the excited state simulations predict larger 

augmentation than do the ground state simulations.  As was the case in CO2, the 

excited state Lennard-Jones interaction energies are larger, on average, by only about 

6% in the excited state. However, in contrast to CO2, where the LDA in S0 and S1 are 

the same, in ethane there is a significant increase in the LDA in S1 when compared 

with the S0.  Based upon the changes in the excited state Lennard-Jones parameters, it 

is not certain why this is the case, however as will be discussed below, this 

observation might be due to the proximity of the simulation state point to the critical 

point. 

 Comparison of the simulated shifts of anthracene in CO2 and ethane show that 

at medium densities, the augmentation in ethane is larger than in CO2.  Although it 

cannot be stated definitively why this may be the case, one possible cause is the state 

point of the simulations.  Plotted in Figure 4.5 are the partial molar volumes of 

anthracene calculated from the ground state simulations in CO2 and ethane,   

TPnU
U

v
n
VV

,,

~~








∂
∂

=∗                                                   (4.2) 

where nU and nV are the moles solute and solvent molecules respectively, V~ is the 

molar volume, P is the pressure, and T is the temperature.  In simulation, the partial 

molar volumes were calculated by taking the difference between system volumes of  
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Figure 4.4: Augmentation Derived from Ground and Excited State Simulation 
observables in Ethane.  Augmentation from 1st solvent shell population (N1) and 
Lennard-Jones solute-solvent interaction energy (Ulj) are plotted with filled and open 
circles respectively.  Results of the simulation spectral shift model are plotted with 
filled triangles.  Open diamonds in S1 denotes augmentation derived from N1 in S0.  
Solid curves are fits of the CO2 simulation data to a 4-parameter Weibull function.  
Broken lines connect C2H6 simulation data points. 
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Figure 4.5: Partial Molar Volumes of Anthracene from Simulation.  Results from CO2 
and ethane are plotted in filled and open circles respectively. 
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the solute-solvent and pure solvent simulations9.  From the figure, it is seen that the 

magnitude of the partial molar volume of anthracene is, generally, much larger in 

ethane.  While this result reflects the fact that within the context of the simulation 

models the solute-solvent interactions are more attractive in ethane, it does not imply 

that the cause is due to the closer proximity of the ethane simulation to the critical 

point.  However, the fact that the partial molar volumes are greater in ethane is 

consistent with the possibility that the simulations in ethane are closer to the critical 

point than the simulations in CO2.  As a result, this possibility cannot be ruled out. 

 The augmentation derived from experimentally measured spectral shifts7,8,10 

of anthracene in CO2 and ethane are shown in Figure 4.6, and are listed in Table 4.5.  

In this figure, the augmentation derived from the experimental shift data of Ito and 

Maroncelli7 is plotted with circles.  The augmentation derived from the emission data 

of Zhang et al.10 and Lewis et al.8 have been averaged together and plotted with a 

solid line (the error bars located at the peak of these curves denotes the spread of the 

averaged data at this point).  While the data of Ito and Maroncelli was obtained at 

higher resolution, the data of Zhang et al. and Lewis et al. are composed of more 

measurements.  As a result, augmentation derived from both sets of data is displayed.  

In addition, because the differences seen in the augmentation derived from the 

experimental absorption and emission shifts of Ito and Maroncelli are within 

uncertainties, these results are not compared to each other.  Instead, focus is placed on 

the comparison between experiment and simulation.  Furthermore, the comparison to 
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Figure 4.6: Comparison of Augmentation Derived from Experiment and Simulation.  
Augmentation derived from experimental absorption and emission shifts (Ref. 7) are 
plotted with filled and open circles respectively.  Augmentation derived from the 
simulated 1st solvent shell population (N1) in S0 and S1 are plotted with filled and 
opoen triangles respectively.  Solid lines denote averaged experimental emission data 
from Refs. 8 and 10. 
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simulation is made in terms of the coordination number, as a result of the 

proportionality of simulation observables established above. 

With respect to CO2, both the absorption and emission shifts show roughly the 

same amount of augmentation.  With respect to simulation, the coordination number 

shows much less augmentation than experiment, which means the same result is 

obtained when the augmentation derived from experiment is compared with the 

augmentation derived from the simulated spectral shifts.  There are two possible 

sources for the disagreement in the simulated shift and experiment.  First, it may be 

the case that the experimental shifts are not proportional to the population in the first 

solvation shell.  On the other hand, it is also a possibility that simulation is just not 

capturing the physical augmentation of the experimental system.  If the first of these 

possibilities is the major contributor to the observed discrepancy, then it is the case 

that the simulation shift model is not suitable to describe the spectral shift of 

anthracene in CO2, as it reports the same augmentation as the coordination number.  

Of course, the difference could also stem from a contribution of the two factors. 

 With respect to the experimental shifts in ethane, the measured augmentation 

is found to be slightly larger in emission than in absorption, which was also shown in 

simulation.  At lower densities, the difference in augmentation from the coordination 

numbers in the ground and excited state simulations, underestimates experiment.  

However, it is worth pointing out that the experimental uncertainties in the shifts of 

anthracene in ethane are significant in this region, and so simulation may indeed 

agree with experiment throughout the entire density range. The experimental spectral 
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shifts are proportional to the simulated coordination number, and hence, the 

simulation shift model seems to quantitatively capture the spectroscopic behavior of 

anthracene in ethane.  The most pressing question, at this point, is do the Coulombic 

interactions in CO2 lead to the observed disagreement between simulation and 

experiment.  Unfortunately, this is left as a point for future work, and cannot be 

answered here. 

 

 

IV.  Conclusions 

 In the current chapter, the ability of the simulation spectral shift model to 

reproduce experimentally measured absorption and emission shifts of anthracene in 

CO2 and ethane has been investigated.  It was shown that in absorption, the 

magnitude of the spectral shifts and widths were reasonably well captured by the 

simulation shift model in both CO2 and ethane. 

 With respect to the derived augmentation from simulation observables, in both 

ethane and CO2, the spectral shift model was found to be proportional to both the 

solute-solvent interaction energy as well as the coordination number.  The 

proportionality of these observables is not unexpected, as the dominant contribution 

to the Lennard-Jones interaction energy come from the 1st solvent shell population.  

In the CO2 simulations, however, the Coulombic interaction energy was found be 

more non-linear in density than the coordination number.  Once again, because the 

Coulombic interaction energy is a more collective quantity than the Lennard-Jones 
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interaction energy, a proportionality with the coordination number is not expected.  

What was left as observation was the fact that in simulation, the augmentation in 

ethane was larger than in CO2. 

 Insofar as the experimental data is concerned, the general results were 

reflected in simulation.  First of all, as in simulation, the local density augmentation 

in CO2 derived from experiment is roughly equivalent in absorption and emission.  

On the other hand, the amount of augmentation derived from the simulated 

coordination number underestimated experiment.  As a result, it was concluded that 

neither quantitative nor qualitative agreement was obtained between experiment and 

simulation in CO2.  In ethane the emission shifts reported slightly larger augmentation 

than did the absorption shifts.  With respect to the simulation shift model, quantitative 

agreement was obtained with simulation.  And hence, it was concluded that the 

spectral shift model, to a good approximation, accurately captured the experimentally 

observed spectral shifts in ethane. 

 In closing, it is important to reiterate the most important question asked in this 

chapter:  Are the experimental absorption and emission shifts a direct measure of the 

physical augmentation in the system?  The work contained in this chapter answers 

this question in part.  Namely, in non-polar systems, the spectral shift model showed 

good agreement with experiment.  On the other hand, this question still lingers in the 

case of weakly polar systems. 
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