# **Dynamic Spectroscopy of Charge-Transfer Processes**





400 450 500 550 600 λ / nm

Some Predecessors: Zusman, Rips, Fonseca, Hynes, Barbara, Fleming, Nordio ...



# Free Energy Surfaces\*

adiabatic reaction on 1d surface
relevant nuclear coordinate is the "solvation coordinate" μ<sub>s</sub>

• free energies are quadratic in  $\mu_s$ :

$$F_{i}(\vec{\mu}_{i}) = U_{i} - \frac{1}{2} B_{tot} \vec{\mu}_{i}^{2} + \frac{1}{2} B_{nuc} (\vec{\mu}_{i} - \vec{\mu}_{s})^{2}$$
  
gas- equilibrium non-equilibrium phase solvation "strain"

$$g_{tot}^{(i)} = \frac{f_{tot}}{1 - \alpha_i f_{tot}} \qquad f_{tot} = \frac{2}{a_{cav}^3} \left(\frac{\varepsilon - 1}{2\varepsilon + \varepsilon}\right)$$

$$B_{el}^{(i)} = \frac{f_{el}}{1 - \alpha_i f_{el}}$$

solute radius

 $\frac{n^2-1}{2n^2+1}$ 

# "Solvation Coordinate"



 $B_{nuc}^{(i)} = \overline{B_{tot}^{(i)} - B_{el}^{(i)}}$ solvation force constant

\*Marcus, Hynes, ...

### Free Energy Surfaces

• reactive surface  $(S_1)$  results from mixing of diabatic (LE, CT) states



Adiabatic Surfaces: S<sub>1</sub>, S<sub>2</sub>





• assume constant  $V_{el}$ 

# CT Dynamics & Solvation Dynamics\*



• friction  $\zeta_s(t)$  obtained from dynamic Stokes shift data

$$\widetilde{\zeta}_{s}(z) = \frac{(z^{2} + \omega_{s}^{2})\widetilde{\Delta}_{s}(z) - z}{1 - z\widetilde{\Delta}_{s}(z)}$$
$$\Delta_{s}(t) \cong S_{v}(t) \equiv \frac{v(t) - v(\infty)}{v(0) - v(\infty)}$$

\*Hynes & co.



### **Spectroscopy**

• spectra are in inhomogeneous broadening limit

Absorption Spectrum:

$$A(\nu) \propto \sum_{i=1}^{\infty} \int d\mu_s P_0(\mu_s) \Delta F_{0i}(\mu_s) |M_{0i}(\mu_s)|^2 \underbrace{L_{abs}(\nu - \Delta F_{0i}/h)}_{\text{trans. }\nu} \text{ transition moment} \text{ abs. line shape}$$

Equilibrated Emission Spectrum:

$$E(\nu) \propto \int d\mu_s P_1(\mu_s) \Delta F_{0i}(\mu_s)^3 |M_{0i}(\mu_s)|^2 L_{em}(\nu - \Delta F_{01}/h)$$

# Model Parameters

#### Solute:

 $U_{0}=0; U_{LE}^{*}, U_{CT}^{*}, V_{el}^{*}$   $a_{cav}, \mu_{0}, \mu_{LE}^{*}, \mu_{CT}^{*}$   $(\alpha_{0}, \alpha_{LE}, \alpha_{CT})^{*} \alpha/a_{cav}^{3} \sim 0.3$   $M_{0,LE}, M_{0,CT}^{*}$ 

Solvent:

 $B_{nuc}, B_{el}$  from  $\varepsilon, n$  (or  $\Delta v$ )

 $\zeta_s(t)$  from C153  $S_v(t)$ 

# System #1: "HDR" Complexes\*



\*data of Londergan, Kubiak et al., JACS 124, 6236 (2002).

# Is it Dynamics?







# Kerr-Gated Spectroscopy



#### 440 nm decays







![](_page_12_Figure_0.jpeg)

![](_page_12_Picture_1.jpeg)

- *charge shift* means energetics are relatively solvent independent
  equivalent to -9 D → +9 D change in μ (AM1/CI)
- $V_{el} \sim 750 \text{ cm}^{-1} \text{ (AM1/CI)}$

![](_page_12_Figure_4.jpeg)

## **BPAc Experimental Results**

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

# **Summary & Conclusions**

- "Photodynamic model" of time-resolved CT spectra based on the theoretical work of Hynes and others
  - adiabatic rxn, reaction coordinate  $\Leftrightarrow \mu_s$
  - free energies quadratic in  $\mu_s$
  - dielectric continuum estimates of energetics  $B_{el}$ ,  $B_{nuc}$
  - GLE with  $\zeta_s(t)$  from  $S_v(t)$
- 1d approach is reasonably successful in capturing solvent's role in some systems: "DTN", "BPAc"; provides an important interpretive tool in others: "HRD"
- (Kerr spectroscopy offers potential for highly detailed comparisons between experiment and model calculations)
- 2d modeling of TICT reactions of "PnC" series is underway

## **Acknowledgements**

![](_page_18_Picture_1.jpeg)

SergeiWeipingKevinArzhantsevSongDahl

Others: Joe Gardecki, Gil Jones (BU), Casey Londergan & Cliff Kubiak (UCSD), DOE

![](_page_18_Picture_4.jpeg)