Simulations of Solubilities and Solvation Energies in Supercritical Fluids Zemin Su & Mark Maroncelli, The Pennsylvania State University

accuracy of simulations & potentials

- effect of solvent heterogeneity
- effect of density augmentation

Solubility and Solvation Energy

 solubility of solids in room-temperature SCFs (e.g. naphthalene in CO₂)

$$x_2(T,P) = A \exp\{-\Delta_{sol}G(T,P)/RT\}$$
solute mole solvation free energy

$$A = \frac{P_2^{sat}(T)V_1(T, P)}{RT}$$
vapor P molar V
of solid of SCF

- the key quantity is the solvation free energy (excess chemical potential): the free energy associated with transfer of solute from gas to solution
- simulating solubilities \cong simulating $\Delta_{sol}G$

• the fundamental relationship

$$\Delta_{sol}G = -k_BT \ln\left\langle \exp(-V_{uv}/k_BT)\right\rangle_0$$

solute-solvent interaction energy average over equilibrium – solvent *in the absence of the solute*

• particle insertion approach:

equilibrium solvent test insertions

• method fails at high $\rho_{\rm r}$ but excellent for SCFs

- equilibrium configurations of neat SC solvents from NVT, NPT molecular dynamics (or Monte Carlo)
- 1000 solvent molecules
- ~200 configurations collected over runs of 2-5 ns
- attempt insertions at 10⁴-10⁵ locations and 10 solute orientations for each configuration
- solvents examined: Xe, C₂H₆, CO₂, CHF₃ (& HS)
- solvent conditions: $T-T_c=5-20$ K, $0.2 < \rho/\rho_c < 3$

"Realistic" Interaction Models

site-site LJ+q form:
$$u_{ij} = \sum_{a \in i} \sum_{b \in j} 4\varepsilon_{ab} \left\{ \left(\frac{\sigma_{ab}}{r_{ab}} \right)^{12} - \left(\frac{\sigma_{ab}}{r_{ab}} \right)^{6} \right\} + \frac{1}{4\pi\varepsilon_{0}} \frac{q_{a}q_{b}}{r_{ab}}$$

- solvents tuned for neat fluid properties
- solute geometries & charges from *ab initio* calculations
- LJ parameters from OPLS-AA force field

Density Dependent Data

data set #1: NA/CO₂ 25 CHI₃/CO₂ 25 $0.5 < \rho/\rho_c < 2; T_c + 10K$ / kJ/mol exp. 20 20 Solute Solvent `sim. 15 15 I_2 Xe 5^{los} Sauceau '00 (308,318) CHF₃ I_2 10 Zhao '95 (308-315) Fernandez '01 (305) solubility Mitra '88 (309) Fernandez '01 (313) CHI_3 Xe Chen '95 (308) Gutowski '97 (313) ∇ Chang '85 (318) Ô Gutowski '97 (327) C_2H_6 CHI₃ Solvation Free Energy 0 CHI₃ CO_2 25 solG, CHI₃ CHF_3 NA/CHF₂ 20 CHI₃/CHF₃ 20 naphthalene C_2H_6 naphthalene CO₂ 15 15 naphthalene CHF₃ 10 C_2H_6 10 anthracene CO_2 anthracene Schmitt '86 (308) 5 5 Schmitt '86 (318) Marceca '94 (304) anthracene CHF₃ Schmitt '86 (328) Marceca '94 (308) 0 0.5 2.0 0.0 0.5 0.0 1.0 1.5 1.0 1.5 2.0 note: $\overline{\mathbf{A}} \Delta_{sol} G$ Density ρ / ρ_c Density ρ / ρ_c

Comparison to Experiment (#1)

- 4 solutes
- 4 SC solvents
- 12 u+v combinations
- 2 selected densities, $1.0\rho_c$ and $1.7\rho_c$

results: $\Delta G_{obs} = 1.01 \Delta G_{sim} - .43$ $r^2 = 0.88$

MAD = 1.9 kJ/mol (10%)

Summary of Sim-Expt Comps.

- □ simulations predict $\Delta_{sol}G$ to an accuracy of ~2kJ/mol (~10%) without any adjustment of potentials (OPLS-AA) or empirical input
- □ but solubilities only accurate to within a factor of 2
- □ in CO₂ electrical interactions typically account for ~15% of $\Delta_{sol}G$ even for non-dipolar solutes
- □ (choice of combining rules matters)
- next use Xe and model solutes to examine effects of solvent density inhomogeneity and local density augmentation

Effect on $\Delta_{sol}G$

۸

Density Dependence, $\Delta_{cav}G \& \Delta_{att}G$

$$\Delta_{solv} \mathbf{G} = \Delta_{cav} \mathbf{G} + \Delta_{att} \mathbf{G}$$

$$+ \underbrace{\mathbf{A}_{sol} \mathbf{G}}_{\Delta_{cav} \mathbf{G}} \underbrace{\mathbf{A}_{sol} \mathbf{G}}_{\Delta_{att} \mathbf{G}}$$

$$(+) \underbrace{\mathbf{A}_{sol} \mathbf{G}}_{(-)}$$

 $C = \Lambda$ $C \perp \Lambda$ C

• $\Delta_{cav}G$ of spherical solutes from cavity size distributions

$$\Delta_{cav} G(R) = -k_B T \ln P(R)$$
$$P(R) = \int_{R}^{\infty} p_{\max}(r) dr$$

• for atomic solvents $\Delta_{cav}G$ reasonably predicted by SPT, HFT Single-Site "Benzene" in Xe

 Δ_{att} G of Single-Site Solutes

Representative Solutes					
#	solute	σ	\mathcal{E}/k_B	obs.	est.
		/Å	/K	slope	slope
1	"Ne"	2.5	55	1.0	0.7
2	"Ar"	3.0	94	1.5	1.1
3	"Xe"	4.0	210	3.1	2.5
4	"benzene"	5.0	372	5.7	4.8
5	"naphthalene"	6.0	544	9.3	8.0
6	"anthracene"	7.0	646	13	12

- for an unstructured fluid expect $\Delta_{att}G \cong U_{att} = -\frac{32\pi}{9} \varepsilon_{uv} \sigma_{uv}^3 \rho$
- $\Delta_{att}G$ & thus $\Delta_{sol}G$ predictable for atomic systems
- effect of density augmentation?

Free Energy vs. Interaction Energy

- 2 systems with explicit solutes:
- #1: $\sigma_{uv} = \sigma_{vv}$, $\varepsilon_{uv} = 2\varepsilon_{vv}$ (313 K)
- #2: $\sigma_{uv} = \sigma_{vv}$, $\varepsilon_{uv} = 4\varepsilon_{vv}$ (300 K)
- N_1 = coordination number
- U_{uv} = solute-solvent interaction energy (electronic shifts)
- $\Delta_{att}G$ = attractive component of solvation free energy

Why is Δ_{att} G different from U_{uv}?

$$U_{uv} = \left\langle V_{uv}(\vec{R}) \right\rangle_{1} \text{ interaction energy} \text{ average u-v} \\ \text{interaction energy} \text{ avg. in } \\ presence of solute \\ \Delta_{att}G \cong k_{B}T \ln\left\langle \exp(+V_{uv}(\vec{R})/k_{B}T) \right\rangle_{1} \text{ of solute} \\ \text{interpretation as weighted averages:} \\ e^{U_{uv}/k_{B}T} = \exp\{\frac{1}{k_{B}T}\int P(V_{uv})V_{uv}dV_{uv}\} \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \cong \int P(V_{uv})\exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G/k_{B}T} \exp(V_{uv}/k_{B}T)dV_{uv} \text{ for all } \\ e^{\Delta_{att}G$$

solvation free energy is biased toward large values of (less negative) of V_{uv}

$$\left\langle e^{x}\right\rangle \geq e^{\left\langle x\right\rangle}$$
 so $\Delta_{att}G\geq U_{uv}$

the difference increases with the width of the $P(V_{uv})$ distribution

Summary & Conclusions

- □ simulations using solvent potentials tuned for coexistence properties and all-atom solute representations with standard (OPLS) potential provide reasonable (10%) accuracy in prediction of solvation free energies and solubilities in SCFs
- solvation free energies are insensitive to the density fluctuations present in SC solvents (not true of enthalpies and entropies)
- solvation free energies depend much less on local density augmentation than do solute-solvent interaction energies (and spectral shifts)

25 $2x\varepsilon$ $-\Delta_{sol}G \,/\,k_BT$ 20 15 BRUDO B 10 **OPLS** 5 0 0.0 15 2.00.5 1.0Density ρ/ρ_c 16

Anthracene/CO₂