Push-Pull "Molecular Rotors" as Local Friction Probes

Probes We've Studied:

- 1. Benzylidene Malononitriles
- 2. Naphthylmethylene Malononitriles
- 3. CCVJ
- 4. Thioflavin T

Our Interests:

- Mechanism?
- □ What's Being Reported?

≈_N

Hui Jin, Chet Swalina, Min Liang, Chris Rumble, Jens Breffke, & Mark Maroncelli Penn State

1: Benzylidene Malononitriles

Hui Jin

Min Liang

Chet Swalina

Some Background

Loutfy, *Macromolecules* **14**, 270 (1981).

SRFluor 6/15

- CT character to $S_0 \rightarrow S_1$; large β $\mu_0 \sim 9$ D, $\mu_1 \sim 18$ D
- weakly fluorescent in most solvents $\phi_f \sim 10^{-3} \cdot 10^{-4}$; $\tau_f \sim 1 \text{ ps}$
- S₁ → S₀ sensitive to local fluidity or free volume of environment
- introduced in early 1980s by Loutfy and Law as environmental fluidity probe
- used to probe local fluidity in: liquids polymers ionic liquids host-guest assemblies biological systems

Spectra & Solvatochromism

- \succ DMN, JDMN spectra similar except for $\Delta\nu$
- ➤ absorption shifts indicate Δµ=7-8 D, consistent with electrochromism
- emission shifts smaller than expected

fs-Time-Resolved Emission (25 °C)

Solvent	η/cP	τ _o /ps	β	<τ> /ps
cyclohexane	0.9	0.7	1	0.7
CH ₃ CN	0.3	1.5	0.94	1.5
DMSO	2	3.0	0.79	3.4
ethylene elycol	17	3.9	0.75	4.6
$[N_{ip311}^{+}] [Tf_2N^{-}]$	113	2.5	0.63	3.5

SRFluor 6/15

Jin et al., *JPCB* **114**, 7565 (2010).

τ_{rxn} & Fluorescence Quantum Yields

• good estimates reaction times \cong lifetimes from QYs if k_{rad} is known

 $\tau_{f}^{-1} = k_{rad} \, (\varphi_{f}^{-1} - 1) \cong \tau_{rxn}^{-1}$

k_{rad} from time-resolved emission:

 $k_{rad} = \frac{\varphi_f}{<\tau_f>}$

k_{rad} from absorption:

$$k_{rad} / \mathrm{s}^{-1} \cong 2.88 \times 10^{-9} n^2 (\widetilde{\nu}_{em}^3 / \mathrm{cm}^{-3})$$
$$\otimes \int_{S_1} \frac{\varepsilon(\nu) / (\mathrm{M}^{-1} \mathrm{cm}^{-1})}{\nu} d\nu$$

φ_f < 10⁻³ (challenging)
 k_{rad} solvent independent
 M₀₁=M₁₀=6.6 ± 0.2 D, the same for both solutes

k_{rad} in Assorted Solvents

Survey of Reaction Rates

Viscosity Exponents, Polarity

Viscosity Exponents $k_{rxn}/T \propto \eta^{-p}$

solvent	<i>T</i> /K	η/cP	#	р		
	DMN					
<i>n</i> -alkanes	298	0.2 - 3	9	0.19		
<i>n</i> -alcohols	298	0.6-11	8	0.14		
2-methyltetrahydrofuran	125-298	0.5 - 34	8	0.69		
ethyl acetate	295 - 349	0.3-0.4	7	1.1		
dimethyl phthalate	298 - 378	2 - 14	9	0.43		
1-propanol	135-298	$2-3 \times 10^{5}$	8	0.39		
glycerol	297-366	6-1040	8	0.61		
$[N_{ip311}][Tf_2N]$	258-338	22-2300	9	0.40		
• • •	JDMN					
<i>n</i> -alkanes	298	0.2 - 3	9	0.29		
<i>n</i> -alcohols	298	0.6-11	8	0.41		
<i>n</i> -alcohols	293	0.5-11	10	0.29		
alcohols + glycerol	RT	2 - 1000	14	0.59		
alcohols + glycerol	298	4-290	9	0.58		
ethylene glycol + glycerol	RT	50-1000	6	0.59		
2-methyltetrahydrofuran	125-298	0.5 - 34	8	0.78		
ethyl acetate	295-341	0.3 - 0.4	10	1.00		
dimethyl phthalate	297-396	1 - 14	14	0.49		
glycerol	277-381	12-7100	19	0.73		
glycerol	293-373	69-6800	18	0.71		
7 imidazolium	263-343	10-700	11	0.3569		
ionic liquids						

Viscosity+Polarity Correlation

both fluidity "1/η" and polarity play important roles

SRFluor 6/15

Jin et al., JPCB 114, 7565 (2010).

What's the Mechanism?

Mqadmi (1990)

Torkelson (1995)

Drickamer (1998)

Samanta (2008)

DCVJ - A Molecular Rotor

Gas-Phase Torsional PES of S₁ DMN

- $\succ \tau_c$ is primary reaction coordinate
- scanned at SA2-CAS(12,11)/6-31G(d) level (S₀ optimized geometries)

Details of PES Search

CH3

 CH_3

Ca

- search of S₁ @ RI-CC2/def2-TZVP level located minima at $\tau_a=90^\circ$ and $\tau_b \sim \tau_c \sim 20^\circ$, but no $\tau_b=90^\circ$ TICT state
- (a TD-B3LYP located a τ_b -TICT state, but LC corrections eliminated it)
- a CIS search did not reveal a τ_b TICT state; instead a conical intersection with S₀ was found at $\tau_c=90^\circ$

30

60

 τ_{c} / degree

0

0

CAS-SCF Predictions

SRFluor 6/15 Swalina & Maroncelli, *JPCC* **114**, 5602 (2010)

90

Preliminary MD Simulations

- explore solvent effect by combining QM $E(\tau_c)$ with classical solvent bath via molecular dynamics simulations
- semi-rigid solute (τ_c only)
- 108 CH₃CN solvent molecules
- 2000 n.e. trajectories on U₁
- terminate when $|\tau_c| = 85^\circ$

Variations with τ_c PES & Solvent

- dynamics are sensitive to k_BT-level variations in E(τ_c)
- viscosity variation & DMN/JDMN difference like experiment
- > overall approach is promising

2: Naphthylmethylene Malononitriles

Brian Williams

Jens Breffke

Prior Work, Schanze & Co.

- DFT calculations
- survey of solvatochromic shifts, quantum yields, transition moments in 11 solvents of varying polarity
- emission lifetimes on ps & fs timescales

Breffke, Williams, & Maroncelli, J. Phys. Chem. B 119, (2015) [10.1021/jp509882q].

Our Work

Conformer Possibilities

SRFluor 6/15

Breffke et al., J. Phys. Chem. B 119, (2015) [10.1021/jp509882q].

1-MN: no sign of multiple conformers in any solvent

2-MN: hints of multiple emitting species only in nonpolar and weakly polar solvents

Fluorescence Lifetimes

- decay mechanism is isomerization
 (ω) & IC as in the benzylidene case
- $\succ \theta$ and ω coordinates are coupled
- pretwisting/strain in S₀ is reflected in decay rates (S₁ isomerization PES)

3: CCVJ (A Cautionary Tale)

Chris Rumble

CCVJ as a Local Flow Sensor

flow rate

3.5 At rest 3.0 2.5 20 1.5 1.0 0.5 0.0 475 525 500 550 450

not an effect of photobleaching

- deactivation via TICT mechanism
- proposed molecular mechanism in which shear stress/flow influences TICT process

Rumble et al., J. Phys. Chem. A 116, 10786 (2012).

Photoisomerization Mechanism

Fluorescence Lifetimes

- > CCVJ similar to DMN, JDMN but slower
- $\succ \tau \propto \eta^{p}$ with p~0.4 for all 4 species
- shorter lifetime of Z isomer likely due to significant nonplanarity in S₀
- > caution is needed with asymmetric substitutions

4: Thioflavin T

Jens Breffke

ThT⁺ as Sensor for Amyloid Fibrils

introduced in 1945 for detecting amyloid fibrils
 still standard dye for monitoring fibrillization kinetics

Insulin Fibrillization Kinetics

SRFluor 6/15

Electronic Structure Calculations

Ren et al., JPCA 117, 6096 (2013).

180

TR Emission Spectra via Kerr Gating

ThT⁺ in CH₃CN

large Stokes shift + intensity loss
intensity decays non-exponential
marked red tail to emission

Solvent Dependent Lifetimes (25 °C)

Correlations with Solvation Times and Viscosity 100 C153 $< \tau_{solv} >$ Viscosity C10=decanol C10 C10 PG=prop. glycol PG **C**5 C5 ps EG EG=ethyl. glycol C4 10 6=HMPA $< \tau_{Intensity}^{>}$ C3⁶ **C**3 p=1 1=propylene C2=ethanol **C**2 C2 1 carbonate 2 2=DMSO W ³ 5-Cj₩NF C1=methanol W=water **GIF** 7 4=acetonitrile 1 10-1 10^{0} 10¹ 10^{2} $10^3 0.1$ 10 100 1 $<\tau_{C153}>$ / ps η / mPa s

 \succ decay times \approx solvation times in many solvents but not in n-alcohols

 viscosity scaling nearly η¹ in n-alcohols; ps measurements of Huppert & co. show T, P dependence in n-alcohols also scales as ~η¹

SRFluor 6/15

Summary

the push-pull vinyl malononitriles & relatives we've studied share many common features:

- highly solvatochromic
- weakly fluorescent to rapid internal conversion
- quantum yields & lifetimes sensitive to environmental fluidity (and polarity)
- primary decay mechanism is twisting about vinyl linker
- quantum yields & lifetimes sensitive to environment: both fluidity and polarity
- □ in DMN and JDMN S₁ PES is relatively flat; lifetimes highly sensitive to small changes to PES; pretwisting important
- asymmetrically substituted may involve long-lived photoproducts so some care is necessary
- ThT⁺ similar environmental sensitivity but mechanism is TICT process coupled to overall bend
- potentially better target for detailed modeling studies of environmental dependence

Acknowledgements

Jens Breffke

Chris Rumble

Min Liang Hui Jin Lillian Li **Chet Swalina** Sergei Arzhantsev

