Benzylidene Malononitriles as Local Friction Probes

 Experimental Characterization
Electronic Structure Calculations
Simulations of Solution-Phase Dynamics

Chet Swalina, Hui Jin, Min Liang, Durba Roy, & <u>Mark Maroncelli</u> The Pennsylvania State University

"Push-Pull" "Molecular Rotors"

- significant CT character to $S_0 \rightarrow S_1$; large β

 $\mu_0 \sim 9 D$, $\mu_1 \sim 18 D$

- weakly fluorescent in most solvents $\phi_f \sim 10^{-3} - 10^{-4}; \tau_f \sim 1 \text{ ps}$
- S₁ → S₀ sensitive to local fluidity or free volume of environment
- used to probe liquids, polymers & biological systems*

Our Interests:

- determine deactivation mechanism & better define what is being sensed
- learn about reactive friction

*Haidekker & Theodorakis, Org. Biomol. Chem. **5**, 1669 (2007).

Spectra & Solvatochromism

 \succ vibronic widths in S₁ > S₀

- > absorption shifts indicate $\Delta \mu = 7-8$ D, consistent with electrochromism
- emission shifts smaller than expected

Jin et al., JPCB 114, 7565 (2010).

Pacifichem 12/19/10

Heterogeneous Spectra & Kinetics in ILs

Pacifichem 12/19/10

τ_{rxn} & Fluorescence Quantum Yields

• can estimate reaction times \cong lifetimes from QYs if k_{rad} is known

$$\tau_{f}^{-1} = k_{rad} (\varphi_{f}^{-1} - 1) \cong \tau_{rxn}^{-1}$$

k_{rad} from time-resolved emission:

 $k_{rad} = \frac{\varphi_f}{<\tau_f>}$

k_{rad} from absorption:

$$k_{rad} / \mathrm{s}^{-1} \cong 2.88 \times 10^{-9} n^2 (\widetilde{v}_{em}^3 / \mathrm{cm}^{-3})$$
$$\otimes \int_{S_1} \frac{\varepsilon(\nu) / (\mathrm{M}^{-1} \mathrm{cm}^{-1})}{\nu} d\nu$$

- \succ (ϕ_{f} difficult to measure)
- $> k_{rad}$ solvent independent
- > $M_{01}=M_{10}=6.6 \pm 0.2$ D, the same for both solutes

Pacifichem 12/19/10

k_{rad} in Assorted Solvents

Survey of Reaction Rates

\geqslant	k(DMN)~2k(JDMN)
	$k_{_{rxn}}$ / $T \propto \eta^{-p}$

Exp. p	DMN	JDMN
n-alkanes	.19	.29
n-alcohols	.14	.41
mTHF (T)	.69	.78
1-PrOH (T)	.39	

➤ solvent polarity?

What's the Mechanism?

Gas-Phase Torsional PES of S₁ DMN

- \succ $\tau_{\rm c}$ is primary reaction coordinate
- scanned at SA2-CAS(12,11)/6-31G(d)

level (S_0 optimized geometries)

Details of PES Search

CH₃

 τ_{b}

 τ_{a}

- search of S₁ @ RI-CC2/def2-TZVP level located minima at $\tau_a = 90^\circ$ and $\tau_{b} \sim \tau_{c} \sim 20^{\circ}$, but no $\tau_{b} = 90^{\circ}$ TICT state
- (a TD-B3LYP located a τ_b -TICT state, but LC corrections eliminated it)
- a CIS search did not reveal a τ_h TICT state; instead a conical intersection with S₀ was found at $\tau_c = 90^{\circ}$

9

Preliminary MD Simulations

Exp.

- explore solvent effect by combining QM $E(\tau_c)$ with classical solvent bath via molecular dynamics simulations
- semi-rigid solute (τ_c only)

Expt

Variations with τ_c PES & Solvent

- > dynamics are sensitive to k_BTlevel variations in E(τ_c)
- viscosity variation & DMN/JDMN difference like experiment
- ➤ overall approach is promising

Summary & Conclusions

- DMN and JDMN characterized as environmental probes DMN first direct measurements of room-T dynamics <u> N/</u> k_{rad} conveniently independent of solvent $\Box \phi_f \leftrightarrow \tau_{rxn}$ data in 33 common solvents: H٩ • observe $k_{rxn}/T \propto \eta^{-p}$ with 0.2<p<1 in single solvents vs. T & in homologous series JDMN analogous to small-molecule rotations solvent polarity likely important \Box S₁ decays primarily via double-bond isomerization (τ_c) H- \Box initial MM simulations on QM-derived τ_c surfaces exhibit
 - proper time scale and sensitivity to solvent & solute comparable to experiment
- further simulations should provide molecular-level description of environmental friction on these reactions

Ν

Acknowledgements

Durba Roy

Min Liang Hui Jin Lillian Li

Chet Swalina Sergei Arzhantsev

